
Protecting Cyber Physical Production Systems using
Anomaly Detection to enable Self-adaptation

Giuseppe Settanni, Florian Skopik, Anjeza Karaj, Markus Wurzenberger, Roman Fiedler
Center for Digital Safety and Security

AIT Austrian Institute of Technology - Vienna, Austria

firstname.lastname@ait.ac.at

Abstract—The industrial world is going through its fourth
revolution also known as Industry 4.0. Modern industrial pro-
cesses leverage advanced IT technologies to increase productivity
and often combine multiple system concepts such as Internet
of Things (IoT), Cyber Physical Systems (CPS) and Cloud
Computing. Cyber Physical Production Systems (CPPS) are key
enablers of this revolution. In CPPS, raw materials, machi-
nes, and operations are interconnected to form a sophisticated
network. Protecting them against advanced cyber-threats is a
priority concern for the future implementation of Industry 4.0
applications. Any impairment of such systems can lead, in fact,
to catastrophic damages resulting in a substantial financial loss
for governments, companies, as well as endanger the safety of
the society. The need for high availability and reliability of
these systems is therefore the pillar guiding our research. This
paper proposes the adoption of anomaly detection as a method
to support self-adaptation in CPPS and to ensure flexibility,
reliability, and protection of industrial environments against
modern cyber threats. An anomaly detection mechanism can
be employed to monitor, and learn the normal behavior of an
industrial system, and to generate alerts when the observed
events indicate abnormal activities. On this concept we base our
work, and we demonstrate how timely identifying critical security
events can enable, through the self-adaptation (e.g., triggering
automatic configuration changes), an efficient protection of the
CPPS against advanced threats, and an effective containment of
their effects.

Index Terms—Cyber Physical Production Systems, Self-
adaptation, Anomaly Detection, Industry 4.0.

I. INTRODUCTION

Cyber-Physical Production Systems (CPPS) will become

the backbone of modern industry. Protecting them against

sophisticated cyber-threats is a priority concern for the fu-

ture implementation of Industry 4.0, as numerous challenges

related to data protection, safety, and security, become critical

in this domain [1]. Reliability and availability of CPPS can

be dangerously affected by the increasing number of cyber-

attacks specifically targeting these systems. Traditional means

of handling attacks and failures, relying on human intervention

in industrial processes, do not provide appropriate protection in

this new setup, where real-time operations and high availability

are crucial requirements [2]. Moreover, the communication

flows in this environment are highly heterogeneous and dy-

namic, because of the coexistence of legacy devices and

systems embedding newer technologies. The industrial Internet

is, in fact, more than a simple combination of Operational

Technology (OT) and Information Technology (IT) within the

digital industry. It involves Internet of Things, autonomous

production, and CPS. This synergy creates numerous opportu-

nities and advantages for industrial environments [3], however,

a great complexity and sophistication implies an increasing

attack surface and exposes this environment to several security

challenges.

According to the Industrial Internet Consortium [4], a

broad range of vulnerabilities can expose industrial endpoints

(e.g., Programmable Logic Controllers (PLCs) and sensors) to

security threats in areas spanning from change and configu-

ration management, software development, and access control

management. The American National Institute of Standards

and Technology (NIST) catalogs threats potentially affecting

industrial control systems in: control logic manipulation, mal-

ware, denial of control actions, and spoofed system status [5].

Additionally, security threats can be categorized according to

the system layers they affect [6]. The sensor and actuator layer

is usually targeted by brute force attacks, dictionary attacks,

and power consumption attacks; the network layer is exposed

to security threat related to communication processes such as

replay attacks, data eavesdropping, collision attacks, jamming,

flooding and wormhole attacks. On the Control layer security

threats against the PLCs, remote terminal units or other devices

can provoke de-synchronization, leading the systems to take

undesired control decisions. Finally, on the Information layer

eavesdropping and traffic analysis can be put in place to

acquire sensitive data from the system.

These security threats need to be considered while designing

the protection measures of a network infrastructure for Indu-

stry 4.0. Consequently, a comprehensive approach is required

to protect such an infrastructure, which takes advantage of

the distributed nature of CPPS, and leverages the integrated

IT technologies not only to increase productivity, but also to

enhance security [7]. Sophisticated mechanisms are to be em-

ployed to timely adjust the overall system’s configuration and

regulate the behavior of the different components deployed,

in order for the CPPS to operate in its optimal condition.

CPPS of the future will be able to self-configure, self-protect,

self-heal and self-optimize. According to [8], self-adaptation is

indeed one of the five areas that will have high priority in the

future research for Industry 4.0. Self-adaptive CPPS flexibly

and timely configure themselves and swiftly adjust to adverse

and suboptimal conditions, guaranteeing the system to always

operate above a predefined performance level.

978-1-5386-6530-5/18/$31.00 ©2018 IEEE 173

In this work we demonstrate how anomaly detection met-

hods allow to opportunely detect critical threats, and, based

on a series of defined security metrics, it permits to instantiate

the self-adaption process, hence containing the detected attack,

and mitigating its impact on the CPPS.

The remainder of this paper is organized as follows. Section

II presents a state of the art analysis of self-adaptation control

methods, and gives a brief overview on existing anomaly

detection techniques. In Section III we outline the application

of self-adaptation to CPPS, illustrating the four phases of

the MAPE-K cycle; moreover, we propose the adoption of

anomaly detection mechanisms to support the monitoring and

analysis phase of the self-adaptation process. In Section IV

we describe the testbed we developed, as proof of concept, to

validate the effectiveness of the proposed approach. Section V

concludes the paper providing an outlook on future work.

II. RELATED WORK

Security is a major concern for CPPS as they become

more intelligent, interconnected, and coupled with physical

devices. For various activities from security analysis to de-

signing security controls and architectures, a systematic and

structured view of security-related information is required.

Approaches to establish a security viewpoint in the CPPS

reference architecture model have been proposed by the scien-

tific community, mostly based on the Reference Architecture

Model for Industry 4.0 (RAMI 4.0) standard [9].

The risk architecture level of the RAMI 4.0 model in-

cludes vulnerabilities and threat catalogs, as well as safety

and security components. We demonstrate in this paper that,

within such components, anomaly detection can be adopted to

monitor and analyze events generated by the CPPS and trigger

alarms whenever suspicious activities are revealed, with the

ultimate goal of timely reacting to cyber threats.

This approach enables CPPS to implement the self-

adaptation paradigm [10]. A self-adaptive system is a system

able to modify its behavior to meet predefined performance

objectives [11]. In order to handle unexpected events, such

as undesired changes in the system environment, failures,

security-threats, etc., self-adaptive systems are able to monitor

themselves, analyze the observed events, and autonomously

put in place specific reaction procedures when necessary.

Different approaches have been developed to achieve self-

adaptive capabilities in control systems such as in [12] and

[7]. Our research focuses on a self-adapting mechanism whose

essential functions are described in the Monitor-Analyze-Plan-

Execute over Knowledge-based (MAPE-K) reference model

[13]. In particular we investigate, how anomaly detection

techniques can support the monitoring phase and implement

the analysis phase in the MAPE-K model.

There exist generally three detection methods usually ap-

plied in intrusion detection systems (IDS): signature-based

detection (SD), stateful protocol analysis (SPA), and anomaly-

based detection (AD) [14]. SD and SPA can only detect

previously known attack patterns using signatures and rules

that describe malicious events and thus are also called black-

listing approaches [15]. AD approaches are more flexible and

able to detect novel and previously unknown attacks. They

establish a baseline of normal system behavior and therefore

are also called white-listing approaches [16].

The rapidly changing cyber threat landscape demands for

flexible and self-adaptive IDS approaches. One solution are

self-learning AD based approaches that automatically learn

the system behavior, and continuously adapt the corresponding

model to reflect any system change; this serves as ground truth

to detect anomalies that reveal attacks and especially intruders.

Generally, there are three ways to realize self-learning AD:

supervised, semi-supervised, and unsupervised [17]. Unsuper-

vised methods do not require any labeled data and are able

to learn distinguishing normal from malicious system beha-

vior during the training phase. Semi-supervised methods are

applied when the training set only contains anomaly-free data;

they are also known as ‘one-class’ classification. Supervised

methods require a fully labeled training set containing both

normal and malicious data.

In this paper, we propose a semi-supervised self-learning

anomaly detection method (introduced in [18]) as means to

reveal critical security events occurring in the CPPS, to allow

the definition of relevant security metrics, and to enable the

monitoring and analysis phases in the self-adaption cycle.

III. SELF-ADAPTIVE CPPS

In this section we recall the phases comprising the MAPE-

K cycle, we propose the adoption of this reference model as a

suitable approach to facilitate self-adaptation in CPPS, and we

illustrate how anomaly detection methods facilitate the phases

of monitoring and analysis of this cycle.

A. MAPE-k Cycle

Cyber-physical systems (CPPS) seamlessly integrate com-

putational and physical components. Adaptability, realized

through feedback loops, is a key requirement to deal with

uncertain operating conditions in CPPS. Among the existing

models, the MAPE-K feedback loop (shown in Figure 1) is

the most influential reference control model for autonomic and

self-adaptive systems [13].

Monitoring

Analysis

Planning

ExecutionTarget
System

Apply changes
through actuators

Get data
through
sensors

K

Fig. 1. MAPE-K cycle.

The Knowledge base (K) maintains data related to the target

system and its environment, the adaptation goals, and other

relevant information that are shared between all the MAPE

phases. The Monitoring function (M) gathers particular data

from the underlying target system and from the operational

174

environment, through sensors deployed in the infrastructure.

It stores the collected data in the shared knowledge base. The

Analysis function (A) examines the data to check whether an

adaptation is necessary. If so, it triggers the Planning function

(P) that, following some predefined policies, composes a work-

flow of adaptation actions necessary to achieve the systems

goals. These actions are then carried out by the Execution
function (E), through effectors (or actuators) installed on the

managed system. All these functions can communicate directly

with one another or indirectly by sharing information in the

knowledge base. The operations performed by M, A, P, and E

may be executed by multiple components that coordinate with

one another to adapt the system when needed, i.e., they may

be decentralized throughout the multiple MAPE-K loops.

The main task of the monitoring function is collecting data

captured by different sensors. The process of generating events

requires data aggregation and filtering to determine what needs

to be analyzed in the subsequent phase. Since hundreds of

sensors can be placed in a production plant, it is crucial that

unnecessary data, or data that does not carry any relevant

information, is filtered out and not used for further analysis.

The analysis function is responsible to observe and analyze

the output of the monitoring phase and determine if any change

is required. Performance metrics are adopted to define the

state of the system. If such metrics indicate that the system

is operating in a sub-optimal condition, a change request,

describing the modifications that need to be applied to the

system, is generated and delivered to the planning phase.

The planning function selects one or more Self-Adaptation

Policies (SAPs) to trigger a required action on the target

system. Based on the incoming results of the analysis phase

a change plan is generated, and delivered to the execution

phase. SAP can be Event-Condition-Action (ECA) policies,

goal policies, or utility function policies [12].

The execution function carries out the actions defined in

the planning phase through effectors or actuators on the target

system. The Autonomic Manager, responsible for the coordi-

nation of the execution phase, selects a self-adaptation policy

corresponding to a change request, and specific actions are

executed to opportunely modify the state of the system. The

execution phase could involve updating the shared knowledge

as part of the execution of the planned change.

The knowledge base is used to extend the capabilities of

the self-adaptive mechanism. It can include policy knowledge,

topology knowledge or problem determination knowledge.

B. Anomaly Detection to Enable Self-Adaptation

As previously mentioned, this work focuses specifically on

the monitoring and analysis phase of the MAPE-K cycle,

proposing anomaly detection as appropriate method to observe

security events, and evaluate security metrics to steer the self-

adaptation process of a target CPPS, with the ultimate goal

of achieving flexibility while protecting the system against

modern cyber threats. This section shows how the process

presented in the previous section can be implemented to realize

self-adaptation in CPPS and achieve greater security.

Monitoring events occurring in the CPPS is essential to

capture necessary data and allow to detect suspicious activities,

mitigate security threats, and assure the safety and security of

the system. It is fundamental to select the optimal vantage

points that provide monitoring of the CPPS with minimal

redundancy. Normally, the monitoring process consists in

monitoring the network traffic (e.g., passing through a switch),

inbound and outbound connections traced by firewalls, data-

base access, activity of end device controllers (such as PLCs),

commands send from HMIs and workstations.

Event data generated and processed in a CPPS can be

collected in different ways, depending on the data type and the

collection mode. Different tools and standards are available for

this purpose, such as TCPdump1, Wireshark2, Syslog logging3,

and Security Information and Event Management (SIEM)

solutions (e.g., OSSIM4).

The main outcome of the monitoring phase is a series of

events observed by the sensors, employed at diverse locations

within the target system, which necessitate to be examined

in order to identify potential security issues, and trigger the

invocation of an adaptation policy. The following step consists,

hence, in analyzing the acquired data from the CPPS through

anomaly detection mechanisms. This provides information

related to the security status of the system, with the intention

to timely identifying malicious activities within the system.

During the analysis phase, security metrics are observed based

on the alerts triggered by the employed anomaly detection

methods. If the security metric indicates a non-secure CPPS,

a change request is generated and forwarded to the planning

phase, as an input for selecting the most appropriate self-

adaption policy.

Several approaches can be adopted to analyze the data

acquired in the monitoring phase; applicable solutions include

rule-based Network and Host Intrusion Detection Systems

(NIDS), anomaly detection mechanisms leveraging machine

learning and/or clustering algorithms, event correlation tools

and the like [16].

C. Security Metrics and Self-adaptation Policies

In order to accurately identify and examine security metrics

derived from the analysis phase, it is important to distinguish

between a security metric and a security event. A security
event is an event that triggers an alarm during the detection to

indicate an abnormal data instance; a security metric, instead,

considers the occurrence of security events to evaluate the

security state of a system. As illustrated in Figure 2, the data

collected during the monitoring phase can be analyzed by ano-

maly detection mechanisms, whose alarms are then interpreted

considering predefined security metrics. The security metrics

are therefore evaluated and, if necessary, specific actions are

triggered depending on the existing self-adaptation policies.

1http://www.tcpdump.org/
2https://www.wireshark.org/
3https://tools.ietf.org/html/rfc5424
4https://www.alienvault.com/products/ossim

175

These response actions are performed through the actuators,

deployed in the target system, during the execution phase.

Anomaly
Detection

Self-adaptation
PoliciesSensors Actuators

Monitoring Analysis Planning Execution

Collected
Events

Security
Metrics

Response
Actions

Fig. 2. Anomaly Detection to support monitoring and analysis in the MAPE-
K adaptation model.

Examples of security metrics that can be examined in a

CPPS to indicate abnormal behavior may include, the amount

of alarms triggered by intrusion detection systems within

a time interval, the amount of failed attempts to access a

PLC, an unusual event sequence in the access process to a

SCADA system, the presence of traffic generated from or

destined to unknown MAC addresses in the SCADA network,

exceptionally large packets transmitted between a PLC and a

SCADA system, and many more.

In the planning phase a mitigation strategy is selected

among self-adaptation policies (SAPs) to enable a required

action in the target system. Based on the input coming from

the analysis phase a change plan is generated, consisting of

a set of necessary changes (e.g., in the system configuration),

and delivered to the execution phase. The identified security

metrics are the required inputs for enabling self-adaptation

policies.

Let us consider a security metric reflecting the validity of

the events sequence during the access to a PLC in the pro-

duction network. If the observations indicate that the control

commands issued to a PLC, which are normally sent from

the SCADA MTU, are now being sent from an unknown

device in the network, and the anomaly detection tools detect

events that prove this process irregularity, a security alarm

will be triggered. This will indicate an abnormality in the

security metric potentially caused by a connection hijacking

attempt. A possible response action in this case could be: if
the anomaly detection reveals a connection hijacking attempt,
targeting a PLC, block every PLC connection attempt coming
from unknown MAC addresses.

It is important to notice that static mechanisms, such as

invariable access control lists, permitting only a limited set

of hosts with specific IP address to communicate with field

devices, are not effective when considering highly flexible

and volatile environments like CPPS. Therefore agile methods

(e.g., based on the MAPE-K model) are required.

As a second example, let us consider a security metric

that reflects the number of triggered errors during the PLC

login procedure. The generated alerts from the detection tool

show 50 failed login attempt per minute. This is considered a

violation of the aforementioned security metric, and indicates

a possible unauthorized attempt to access the PLC. A possible

response action could be: if the security metric reveals more
than 10 failed PLC login attempts per minute, reset the PLC,

block the connections coming from the identified attempting
MAC address, and request a password reset.

D. Executing Response Actions

Finally, the execution phase is responsible to carry out

the mitigation actions defined in the planning phase, through

the adoption of effectors or actuators deployed on the target

system. Once the autonomic manager has selected a self-

adaptation policy corresponding to a change request form

a security metric, tailored mitigation actions will be put in

place to modify the security state of the CPPS and counter

the identified threat. Response actions may include restarting

system components through a control command, initiating the

procedure of a password update, adding rules to the firewall

to block suspicious connections, etc.

IV. PROOF OF CONCEPT

In order to evaluate the approach described in the previous

section, we setup a test environment to reproduce a simplified

manufacturing process. Each step necessary to prove the ef-

fectiveness of the proposed concept is outlined in this section.

A. Testbed

The testing environment replicates some of the properties,

requirements and processes in place in a manufacturing plant.

In particular, it reflects a simplified version of a CPPS,

deployed in a semiconductor manufacturing plant, to manage

a liquid tank used for cooling down production machinery. As

depicted in Figure 3, the testbed consists of a PLC (Siemens S7

1200), an HMI (Siemens Simatic), and a laptop PC hosting a

web server to control and configure the PLC (Siemens Totally

Integrated Automation (TIA) portal); these components are

connected to one another through a gigabit network switch

(Netgear ProSAFE Plus GS108E).

S7 over PROFINET

Netgear GS108E
(Network Switch)

Siemens SIMATIC
(HMI)

Siemens TIA Portal
(Control Web-Server)

Siemens S7 1200
(PLC)

Fig. 3. Testbed architecture diagram.

The components deployed in the testbed communicate using

the S7 communication protocol. S7 is a proprietary protocol

developed by Siemens to support secure data transmission over

PROFINET5, and to prevent attacks such as Man in the Middle
(MitM) and replay. The connections to the web-server are

secured using TLSv1.2, enabled by default.

5http://us.profinet.com/technology/profinet/

176

B. Simulated Industrial Process

The testbed simulates a simplified process that could be

deployed in a semiconductor manufacturing environment to

manage the level of cooling liquid in a tank used to control

the temperature of a manufacturing machine. The PLC is

programmed to open or close three valves (fill, drain or cool)
on the tank, depending on specific configurable conditions.

Figure 4 shows the inputs of the PLC responsible to control

the aforementioned industrial process based on the program-

med logic. The PLC’s ladder logic is configured so that the

PLC’s outputs (attached to the three tank valves) can assume

a binary value (open/close), depending on: i) the level of the

liquid in the tank, ii) on the buttons pressed by the operator

on the HMI, and iii) on a temperature sensor connected to the

PLC.

Liquid Level
Sensor

HMI

Temperature
Sensor

Input

PLC

Output

Cool Valve

Drain Valve

Fill Valve

Cooling Tank

Fig. 4. PLC input/output.

Every second, the manufacturing machine communicates

its state to the PLC through a temperature sensor. If the

temperature is higher than 90°C, the PLC opens the cool

valve of the liquid tank and the liquid starts flowing out of the

tank to cool down the manufacturing machine. The cooling

process takes 50 seconds and requires an amount of 25dm3

of liquid to decrease the temperature of the manufacturing

machine to the desired value of 70°C. According to the

chip manufacturing process, it takes 140 seconds for the

temperature of the manufacturing machine to go again above

the threshold (90°C), this means that the cool valve is opened

every 2 minutes and 20 seconds. Figure 5 illustrates this

process and shows the variation of the liquid level in the tank

over time.

Liquid
level
(dm3)

Fig. 5. Simulated industrial process: manufacturing machine cooling.

Before the cool valve is enabled, the tank is filled until

the liquid level reaches 30dm3. The time interval between the

end of the filling process and the beginning of the following

cooling cycle is 10 seconds. As soon as the cool valve is

activated, the liquid level decreases with a rate of −0.5dm3

per second. After 44 seconds the fill valve is opened because

the level of the liquid reaches the lower threshold (8dm3).

The cooling process finishes 6 seconds after the fill valve is

enabled; at this point the level is 6.2dm3. Since the level of

the liquid is below 8dm3, the PLC will let the filling process

continue until the liquid level reaches 30dm3. The fill valve

allows the liquid to enter the tank at rate of +0.3dm3 per

second, so it takes around 80 seconds to reach 30dm3. The

variation of the liquid level in the tank follows the same trend

as long as no change is applied to the PLC logic and no action

is performed by the operator through the HMI. If an operator

activates the fill valve via the HMI, the cooling liquid will flow

in the tank until the level reaches a value of 46dm3, then the

PLC will automatically open the drain valve and let the water

flow out the tank. In case the drain command is not executed

(e.g., due to a failure in the PLC system, or because the HMI

control commands are not delivered to the PLC) the fill valve

will remain open as long as the liquid does not exceed the

safety limit of 47dm3, hence preventing overflows.
In our testbed, no real liquid tank is deployed. The change

of liquid level (Nlev) is, in fact, not measured by a sensor,

but is calculated following the expression: Nlev = pl + ts ∗ r,

where pl is the liquid level at the previous stage, r is the rate

at which the liquid is flowing in or out the tank, and ts is the

period of time that a valve remains open.

C. Monitoring and Analysis
In order to observe the system behavior, several data sources

can be monitored in our testbed, including the PLC logs, the

PLC’s diagnostic buffer, the HMI logs, and the network traffic

crossing the switch.
For the sake of simplicity, in our validation we focused our

attention on log messages produced by the PLC and by its

diagnostic buffer. The log messages generated by the PLC,

report the status of the PLC’s inputs and outputs, as well

as the liquid level measured in the tank. By analyzing the

PLC’s log messages it is possible to observe if the logic of

the PLC is altered i.e., there is a mismatch between input,

expected output, and liquid level, indicating a potential PLC

corruption. The PLC’s diagnostic buffer, instead, records the

latest 50 system events, including transitions of the CPU

operating mode, errors detected by the PLC’s CPU, as well as

connections established between the control server and remote

clients.
Logs produced by the two selected data sources, and

collected through continuous monitoring, are consequently

examined by an anomaly detection system during the analysis

phase. Considering the implemented test setup and the moni-

tored data, we selected ÆCID6 as the most suitable anomaly

detection tool.
ÆCID follows a lightweight event-based white-listing ap-

proach, which processes log data in order to reveal any

6https://aecid.ait.ac.at/

177

deviations from the self-learned system behavior (see [18] for

further details). ÆCID consists of two components: ÆCID
Central and the anomaly miner (AMiner). An AMiner instance

can be installed on distributed nodes, or deployed on a central

node and collects logs from distributed monitored systems.

The AMiner parses log lines and checks white-listing rules to

identify if the normal system behavior is violated. In cases

of an anomaly the AMiner triggers an alarm, notifies the

administrator (via e-mail or SIEM alert), and reports the alarm

to ÆCID Central. ÆCID Central manages all the AMiner

instances deployed in the monitored network. It continuously

learns and adapts the internal system model by collecting and

analyzing unparsed log lines from the AMiner instances; it ge-

nerates, updates and distributes sets of rules to be checked by

the AMiner instances; moreover, it correlates events reported

by different AMiner instances to detect suspicious activities

spanning multiple components in the network.

In the test setup we deployed ÆCID in its most light-weight

configuration: only one AMiner instance was indeed installed,

stand-alone, on the control server machine. The log messages,

produced by the PLC and its diagnostic buffer, were therefore

collected and analyzed off-line by the AMiner instance running

on this machine. In order to keep the resource requirements

as low as possible, thus accurately reflecting a real CPPS

scenario, no ÆCID Central was installed in our tests. In

this operational mode the AMiner needs to be opportunely

configured by the system administrator to: i) parse the different

input log messages, and ii) distinguish abnormal log lines

which do not match the rules reflecting the normal system

behavior.

Using the set of data model elements available in ÆCID,

the administrator can define multiple parser models to instruct

the AMiner on how to correctly interpret the different log

messages. Moreover, since the behavior of the PLC and the

cooling process is known a priori, a precise set of rules can be

defined by the administrator to white-list every expected event

recorded by the logs. For example, every log line generated

by the PLC reporting: liquid level = 6 (between 0dm3 and

8dm3), inputs = 0 (i.e., all valves closed), and outputs = 1
(i.e., open fill valve), is to be considered normal, and therefore

white-listed.

D. Detecting Security Threats

In this section we demonstrate how a cyber threat, targeting

the simplified CPPS implemented in our testbed, can be

revealed by ÆCID, and contained by employing the self-

adaptation approach described in Section III.

Let us consider the case in which the CPPS is targeted by

a multi-stage threat. The main purpose of the intruders is to

cause damage to the production facility. In particular, they

aim to compromise the cooling process of the manufacturing

machine and, at the same time, to flood the surrounding area

with the cooling liquid overflowing from the tank. To perform

this attack, the intruders intend to attack the PLC’s ladder

logic modifying its control sequence. To achieve this they

put in place an advanced persistent threat [19], consisting of

four stages. After acquiring relevant information using social

engineering methods, in the reconnaissance phase (stage I), the

attackers carry out a spear phishing campaign to gain access

to the enterprise network. In the initial compromise, they

infect the victim employee’s workstation with DarkComet7 (a

sophisticated remote administration tool) and enable a back

door to allow remote access (stage II). Consequently the

attackers manage to infect other hosts in the local network,

performing the so called lateral movements (stage III), and

obtain administrative privilege on an engineering workstation

deployed in the SCADA network. To intrude the production

network, the attackers exploit a vulnerability of a network

switch and establish a communication with the field devices,

including PLCs (stage IV). The attackers are now able to

modify the PLC configuration through the TIA portal and

customize its logic. In particular they apply specific changes

to the ladder logic, to disable the cool and the drain valve,

change the fill limit values in the PLC memory, and deny the

HMI to send any overriding control command to the PLC.

Subsequently, they upload the altered configuration settings to

the PLC.

Cooling
Process

Liquid
level

(dm3)

Fig. 6. Cooling process altered after malicious PLC logic update.

Figure 6 illustrates how the cooling process changes after

the PLC starts operating following the new logic (compare

this diagram with Figure 5). Supposing that the new logic is

uploaded before a new cooling cycle starts (as illustrated with

the red dashed line), although the temperature sensor will keep

sending high temperatures measurements to the PLC, the cool

valve will not be open, and the manufacturing machine will not

be cooled down. Assuming that no further safety precautions

are enabled, this will continue until the manufacturing machine

will overheat and stop operating. Meanwhile, the liquid level

in the tank will increase because the fill valve will remain

open, making the liquid overflow the tank, and subsequently

flood the area around the tank.

To detect these irregularities in the cooling process, we

installed an AMiner instance on the control web server. We

collected the PLC logs and the diagnostic buffer messages,

captured during the same time interval the PLC was compro-

mised, and we let the AMiner analyze them. Differently from

the anomaly-free data, every log line not respecting the normal

7http://www.darkcomet-rat.com/

178

TABLE I
DETECTED SECURITY EVENTS AND CORRESPONDING SECURITY METRICS

Security Event Security Metric
SE01: Liquid level out of range SM01: Amount of security events indicating a liquid level higher than 46dm3

SE02: Cool valve erroneously disabled SM02: Amount of security events indicating cool valve disabled when should be enabled
SE03: Unauthorized access to control server SM03: Presence of unauthorized IP address accessing the control server
SE04: Ineffective HMI control command SM04: Amount of security events indicating failed HMI command

process, corresponding to the previously defined white-listing

rules, triggered an alert. For example, a log line reporting

a liquid level over the maximum allowed limit, for a given

combination of input and output values, would be classified

as anomalous, and trigger an alert, as shown in the AMiner

output report depicted in Figure 7.

Fig. 7. Anomalous event detected by the AMiner.

In order to avoid unauthorized access to the control server,

and therefore prevent the modification of the PLC’s ladder

logic, only IP addresses within a permitted range are allowed

to get access to the server. One of the rules added to the

AMiner configuration ensures that the IP addresses of the

clients connecting to the server, belong to the allowed range.

The attack performed in our test violated this rule, since the

intruders gained access to the TIA Portal from an unusual host

machine, whose IP address does not belong to such range.

The AMiner was indeed able to detect these anomalies by

analyzing the messages of the diagnostic buffer; it revealed

that the IP address of one of the clients accessing the web-

server during the attack, was not part of the authorized IP

addresses range (i.e., 192.168.1.0 - 192.168.1.20), and hence

triggered an alert.
Considering the detection performed by monitoring and

analyzing the PLC logs and the diagnostic buffer logs, the

following 4 different security events were generated:

• SE01 - Liquid level out of range: the level of the liquid

in the tank was above the allowed maximum. According

to the ladder logic, it is impossible to have a liquid level

higher than 46dm3, because the drain valve would be

automatically opened. Any event indicating a violation

of the PLC logic is considered as an alarm.

• SE02 - Cool valve erroneously disabled: the cool valve

was disabled when, according to the ladder logic, it

should have been enabled.

• SE03 Unauthorized access to control server: access to

the server performed from an unauthorized IP address.

• SE04 Ineffective HMI control command: commands sent

by the operator from the HMI could not override the PLC

logic.

These events are used as input to the subsequent planning

and execution phases foreseen by the self-adaptation cycle,

and described in the following section.

E. From Security Metrics to Mitigation Actions

A security metric (SM) describes, in a measurable way,

the security status of the CPPS, evaluates if the requirements

for self-adaptation are fulfilled, and triggers a change request

to the planning phase if adaptation is necessary. For each

security event (SE) triggered by the AMiner we defined and

observed a corresponding security metric. Table I highlights

the correspondence between each security event observed by

the AMiner (in the analysis phase), and its respective security

metric.

The metric SM01 observes the amount of sequential alarms

indicating that the volume of liquid in the tank overcomes

the maximum allowed level. SM02 refers to the amount of

consecutive alarms triggered because of an interruption of

the cooling process, i.e., because the cooling valve is closed

although it should be open. SM03 indicates if the control server

is accessed from a host using an authorized IP address. SM04
counts the number of sequential security events indicating that

commands sent by the operator, via the HMI, are not being

executed, preventing the override of the PLC logic.

It is a crucial property of self-adaptive control mechanism,

to ensure that systems keep a certain security state. If the value

assumed by any of the metrics listed above implies that the

security of the system is compromised, a change request is

to be triggered in the planning phase. Actions to overcome

anomalies in the process, are selected by the autonomic ma-

nager, according to specific predefined self-protection policies,

and forwarded to actuators. These actions can be simple

commands or complex scripts. The actuators deployed in the

CPPS call specific functions that modify system configuration

and appropriately adjust settings to mitigate the effects of

the detected anomaly, and restore the secure operation of the

system.

Table II lists examples of significant deviations in the system

behavior, which would correspond to abnormal values of

the security metrics, and therefore require the adoption of

self-adaptation policies (SAP). Considering the self-adaptation

policies listed in the table, a number of possible mitigation

actions can hence be derived to contain the detected anomalous

behavior:

179

TABLE II
SECURITY METRICS AND CORRESPONDING SELF-ADAPTATION POLICIES

Security Metric Self-adaptation Policy
SM01: Amount of security events indicating a liquid level higher SAP01: If SM01 is higher than 2 events per hour, send a control command to
than 46dm3 disable the fill valve and activate the drain valve
SM02: Amount of security events indicating cool valve disabled SAP02: If SM2 is higher than 4 events per minute, reset the PLC and switch to
when should be enabled backup cooling tank to cool the machine
SM03: Presence of unauthorized IP address accessing the control SAP03: If a possible unauthorized connection is observed, prevent the identified
server IP address from accessing control server by adding a denying firewall rule
SM04: Amount of security events indicating failed HMI command SAP04: If SM04 is higher than 2 events per minute, reset the PLC

• in case the policy SAP01 is invoked, a series of control

commands can be sent to the PLC from the control server

to: i) enable the drain valve, and ii) disable the fill valve;

• in case SAP02 is invoked, a reset command can be issued

from the control server to the PLC, and a backup cooling

system, controlled by a secondary PLC, can be enabled

to cool down the manufacturing machine;

• in case SAP03 is invoked, a rule can be added to

the firewall, to blacklist the discovered unauthorized IP

address;

• in case SAP04 is invoked, a reset command can be issued

from the control server and executed on the PLC.

Some of these mitigation action would need to be executed

manually by system administrators, others will be automati-

cally performed by dedicated software tools.

V. CONCLUSION

Cyber-physical Production Systems (CPPS) are one of the

technical driving forces behind the transformation of industrial

production towards the digital factory of the future in the

context of Industry 4.0. Security is a major concern for such

systems as they become more intelligent, interconnected, and

coupled with physical devices.

To address the most critical security challenges, we outlined

in this paper how CPPS can benefit from the adoption of

anomaly detection techniques to facilitate self-protection. We

illustrated the main security threats CPPS need to be able to

detect and react to, we recalled the phases comprising the self-

adaptation process, and we introduced the concept of anomaly

detection as enabler of the monitoring and analysis phases in

the MAPE-k control loop. Finally, we demonstrated, through

an illustrative example implemented in a laboratory testbed,

how anomaly detection methods (e.g., ÆCID) can allow a

CPPS to timely reveal and react to a complex cyber threat.

The application of the approach illustrated in this paper

is currently being validated in the context of the European

research project SemI40 (Power Semiconductor and Elec-

tronics Manufacturing 4.0). In this project, we intend to

further develop, evaluate, and demonstrate the effectiveness

of our solution into an operational industrial environment for

semiconductor manufacturing.

ACKNOWLEDGMENT

This work was funded by the European project SemI40

(ECSEL 692466) and the FFG project BAESE (852301).

REFERENCES

[1] N. Jazdi, “Cyber physical systems in the context of industry 4.0,” in 2014
IEEE International Conference on Automation, Quality and Testing,
Robotics, 2014, pp. 1–4.

[2] T. Bartman and K. Carson, “Securing communications for scada and
critical industrial systems,” in Protective Relay Engineers (CPRE), 2016
69th Annual Conference for. IEEE, 2016, pp. 1–10.

[3] i–SCOOP. Industry 4.0: the fourth industrial revolution guide to
Industry 4.0. [Online; accessed 10 April 2017].

[4] Industrial Internet Consortium and others, “Industrial Internet of Things
Volume G4: Security Framework.” pp. 55–80, 2016.

[5] K. Stouffer, J. Falco, and K. Scarfone, “Guide to industrial control
systems (ics) security,” NIST special publication, vol. 800, no. 82, 2011.

[6] S. Han, M. Xie, H.-H. Chen, and Y. Ling, “Intrusion detection in cyber-
physical systems: Techniques and challenges,” IEEE Systems Journal,
vol. 8, no. 4, pp. 1052–1062, 2014.

[7] M. Tauber, G. Kirby, and A. Dearle, “Self-adaptation applied to peer-set
maintenance in chord via a generic autonomic management framework,”
in Self-Adaptive and Self-Organizing Systems Workshop (SASOW), 2010
Fourth IEEE International Conference on. IEEE, 2010, pp. 9–16.

[8] M. Hankel and B. Rexroth, “The reference architectural model industrie
4.0 (rami 4.0),” ZVEI, 2015.

[9] Z. Ma, A. Hudic, A. Shaaban, and S. Plosz, “Security viewpoint in a
reference architecture model for cyber-physical production systems,” in
Security and Privacy Workshops (EuroS&PW), 2017 IEEE European
Symposium on. IEEE, 2017, pp. 153–159.

[10] H. Muccini, M. Sharaf, and D. Weyns, “Self-adaptation for cyber
physical systems: a systematic literature review,” in Proceedings of the
11th International Symposium on Software Engineering for Adaptive
and Self-Managing Systems. ACM, 2016, pp. 75–81.

[11] A. Musil, J. Musil, D. Weyns, T. Bures, H. Muccini, and M. Sharaf,
“Patterns for self-adaptation in cyber-physical systems,” in Multi-
Disciplinary Engineering for Cyber-Physical Production Systems.
Springer, 2017, pp. 331–368.

[12] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer, vol. 36, no. 1, pp. 41–50, 2003.

[13] P. Arcaini, E. Riccobene, and P. Scandurra, “Modeling and analyzing
mape-k feedback loops for self-adaptation,” in Proceedings of the 10th
International Symposium on Software Engineering for Adaptive and Self-
Managing Systems. IEEE Press, 2015, pp. 13–23.

[14] H.-J. Liao, C.-H. Richard Lin, Y.-C. Lin, and K.-Y. Tung, “Intrusion
detection system: A comprehensive review,” Journal of Network and
Computer Applications, vol. 36, no. 1, pp. 16–24, Jan. 2013.

[15] M. E. Whitman and H. J. Mattord, Principles of information security,
4th ed. Stamford, Conn.: Course Technology, Cengage Learning, 2012.

[16] P. Garcia-Teodoro, J. Diaz-Verdejo, G. Maci-Fernandez, and E. Vazquez,
“Anomaly-based network intrusion detection: Techniques, systems and
challenges,” Computers & Security, vol. 28, no. 1-2, pp. 18–28, 2009.

[17] M. Goldstein and S. Uchida, “A Comparative Evaluation of Unsuper-
vised Anomaly Detection Algorithms for Multivariate Data,” PloS one,
vol. 11, no. 4, p. e0152173, 2016.

[18] M. Wurzenberger, F. Skopik, G. Settanni, and R. Fiedler, “Aecid: A
self-learning anomaly detection approach based on light-weight log
parser models,” in Proceedings of the 4th International Conference
on Information Systems Security and Privacy - Volume 1: ICISSP,,
INSTICC. SciTePress, 2018, pp. 386–397.

[19] M. Ussath, D. Jaeger, F. Cheng, and C. Meinel, “Advanced persistent
threats: Behind the scenes,” in Information Science and Systems (CISS),
2016 Annual Conference on. IEEE, 2016, pp. 181–186.

180

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

