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ABSTRACT
Log data analysis is an essential task when it comes to understand-

ing a computer’s or a network’s system behavior, and enables se-

curity analysis, fault diagnosis, performance analysis, or intrusion

detection. An established technique for log analysis is log line clus-

tering, which allows to group similar events and to detect outliers,

malicious clusters or changes in system behavior. However, log line

clusters usually lack meaningful descriptions that are required to

understand the information provided by log lines within a cluster.

Template generators allow to produce such descriptions in form

of patterns that match all log lines within a cluster and therefore

describe the common features of the lines. Current approaches only

allow generation of token-based (e.g., space-separated words) tem-

plates, which are often inaccurate, because they do not recognize

words that can be spelled differently as similar and require further

information on the structure and syntax of the data, such as pre-

defined delimiters. Consequently, novel character-based template

generators are required that provide robust templates for any type

of computer log data, which can be applied in security information

and event management (SIEM) solutions, for continuous auditing,

quality inspection and control. In this paper, we propose a novel

approach for computing character-based templates, which com-

bines comparison-based methods and heuristics. To achieve this

goal, we solve the problem of efficiently calculating a multi-line

alignment for a group of log lines and compute an accurate approx-

imation of the optimal character-based template, while reducing

the runtime from O(nm ) to O(mn2). We demonstrate the accuracy

of our approach in a detailed evaluation, applying a newly intro-

duced measure for accuracy, the Sim-Score, which can be computed

independently from a ground truth, and the established F -Score.
Furthermore, we assess the robustness of the algorithm and the in-

fluence of different log data properties on the quality of the resulting

templates.
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1 INTRODUCTION
Grouping log lines using clustering and classification algorithms is

an established method to analyze a computer networks’ log data.

Clustering is also the basis of further analysis methods, such as

outlier detection [12] and time series analysis [6], which are often

applied in cyber security and threat detection. These methods allow

to detect suspicious anomalous events and changes in network

behavior which are consequence of malicious misuse caused by

attackers and malware or erratic behavior initiated by misconfigu-

ration and faulty usage. Once log data are clustered, it is possible

to statistically describe these clusters’ properties, such as size, or

diameter. However, most clustering algorithms provide no or only

inaccurate and insufficient information on the content of a log

line cluster. Thus, template generators are required that allow to

generate meaningful cluster descriptions. Additionally, templates

support the process of generating log parsers [2]. Numerous secu-

rity applications benefit from templates and template generators,

including security information and event management (SIEM) so-

lutions, intrusion detection systems (IDS), parser and signature

generators. Furthermore, templates can be applied for log classifi-

cation in general, for log reduction through filtering, and for event

counting.

A template is basically a string that consists of substrings which

occur in each log line of a cluster in a similar location. Those sub-

strings are referred to as static parts of the log lines of the cluster.

They are separated by wild cards, which represent variable parts

of the log lines, such as usernames, IP addresses, and identifiers

(ID). Furthermore, a template has to match all log lines of the cor-

responding cluster.

The unsolved problem of generating a sequence alignment for

more than two log lines, i.e., generating a multi-line alignment, is

one of the main reasons why currently existing template genera-

tors follow token-based approaches and not character-based ones.

In this context, tokens are substrings of a string, separated by a

predefined delimiter, e.g., space or comma. Token-based template
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generators first split log lines into tokens. Afterwards, they gener-

ate a template, where tokens that represent static parts of the log

lines, i.e., occur in all log lines in the same location, remain part

of the template, and all other tokens are replaced by wild cards.

The biggest advantage of token-based template generators is their

high performance with respect to runtime. However, this proce-

dure leads to some significant drawbacks. Token-based template

generators prevent that tokens corresponding to substrings with

high similarity, which only differ in a few symbols, become part of

a template. Thus, they consider words and terms that can be spelled

differently, such as php-admin, PHP-Admin and phpadmin, or when
SQL queries are used, username and u.username, as completely

different. Furthermore, those approaches require a predefined list of

delimiters, which strongly depends on the present log data. More-

over, due to the token-based approach, larger parts of log lines are

covered by wild cards, since tokens are considered entirely different,

even if they only vary in a single symbol. Additionally, it is often

not clear how many tokens a single wild card represents. Most of

the times, a single wild card replaces a different number of tokens,

depending on the log lines that match the template.

In contrast to token-based template generators, character-based

approaches do not rely on predefined building blocks in form of

tokens. These approaches recognize static and variable parts of log

lines independently from predefined delimiters. Figure 1 provides

an example for the two different types of templates (assuming

spaces as delimiters for the token-based approach) for a certain

cluster.

In this paper, we propose an approach for generating character-

based templates to overcome the disadvantages of token-based

approaches. The main challenge to achieve this goal is to calculate

a multi-line sequence alignment [9], i.e., a sequence alignment for

more than two lines. A sequence alignment arranges two char-

acter sequences by aligning their identical or similar parts and

recognizing optional and variable characters. There exist many

efficient algorithms and string metrics to achieve this for two char-

acter sequences [12]. Furthermore, there are algorithms for genetic

or biologic sequences to calculate pair-wise and multi-line align-

ments, which however require knowledge about the evolution of

nucleotides and are therefore not suitable for log data [9]. Algo-

rithms to align multiple sequences of any characters with no evolu-

tionary context are still missing. The main reason is the difficulty

to overcome the high computational complexity of this problem,

which is at least O(nm ), where n is the length of the shortest log

line andm is the number of lines in a cluster.

Hence, we propose a character-based cluster template generator

that incrementally processes the lines of a log line cluster and

reduces the computational complextiyO(nm ) toO(mn2). The main

contributions of the paper are:

(i) Four algorithms to compute multi-line sequence alignments

for any strings.

(ii) An incremental approach to efficiently generate character-

based templates that provide a more detailed representation

than token-based templates.

(iii) A universally applicable template generator for log data inde-

pendent from delimiters.

(iv) A template generator that overcomes the problem of too generic

or over-fitting templates.

(v) Evaluation of the accuracy of the proposed algorithms, as well

as qualitative and quantitative comparison to token-based

approaches carried out on real data.

The remainder structures as follows: Section 2 summarizes back-

ground and related work. The concept of the approach is introduced

in Sec. 3 and Sec. 4 describes the different algorithms for gener-

ating character-based templates in detail. Finally, Sec. 5 evaluates

and compares the algorithms, and Sec. 6 concludes the paper and

describes future work.

2 BACKGROUND AND RELATEDWORK
Currently, most template generators follow token-based approaches.

Many of them build on clustering [5]. For example, SLCT [10]

follows a density-based clustering approach. Thereby, frequent

words on certain positions in the log lines are considered as static

and infrequent ones as variable. IPLoM [8], on the other hand,

implements partitioning. Hence, log lines are split at appropriate

token positions and sorted into subgroups iteratively. Furthermore,

many log parser generators provide token-based templates or build

on template generators [2]. Two examples for tree-based approaches

are Drain [3] and AECID-PG [11], which depict log data as graph-

theoretical tree, where each node represents a token with an either

static or variable pattern. Following the branches of a parser tree

allows to obtain log templates.

The foundations for character-based templates are string metrics

that allow to compare two strings character-wise. Somewell-known

examples for such string metrics are the Levenshtein distance, the

Needleman-Wunsch algorithm, the Smith-Waterman algorithm, and

different versions of the Jaro distance [1]. In this paper, we focus

on the Levenshtein distance, which counts the edit operations that

are required to transform a string into another one. By reverting

this procedure and leveraging the computed score-matrix, it is

possible to calculate an alignment. Other algorithms, such as the

Needleman-Wunsch and Smith-Waterman, provide an alignment

at once, but suffer from a higher computational complexity due to

a more complex scoring function. However, all these algorithms

are only able to provide pairwise sequence alignments.

In the area of bioinformatics, there exist several highly efficient

algorithms, such as MAFFT, M-Coffee and PROMALS, that allow

to compute so-called multiple sequence alignments [9]. These al-

gorithms mostly base on previously mentioned methods for calcu-

lating pairwise sequence alignments. Due to the fact that they use

scoring systems and heuristics that make use of evolutionary rela-

tionships between amino acids, they can only be applied to strings

that represent biological sequences such as DNA and RNA, and not

to any other type of string [9]. Therefore, efficiently generating a

template for a group of similar strings remains an unsolved problem.

Furthermore, it is not expedient to calculate the optimal alignment

for a group of strings, because it would be computationally too

expensive. Hence, it is only feasible to approximate the optimal

template.
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Cluster:
database-1.server.d3.local mysql-normal ORDER BY status-system
database-0.server.d4.local mysql-normal GROUP BY status-network
database-1.server.d3.local mysql-normal GROUP BY status-system
database-0.server.d4.local mysql-normal ORDER BY status-network

Template token-based:
[*] mysql-normal [*] BY [*]

Template character-based:
database-[*].server.d[*].local mysql-normal [*]R[*] BY status-[*]t[*]

Figure 1: Example of templates for a cluster of SQL logs.

3 CONCEPT
In the following, we describe a novel concept that allows to effi-

ciently generate character-based templates for groups of similar

log lines, e.g., pre-clustered log lines. The goal of computing a tem-

plate for a group of log lines is to recognize static and variable

parts occurring in all of the lines. This allows to determine shared

properties and enables the design of meaningful log line cluster

descriptions in form of templates that can be used for further anal-

ysis. Since the aim is to recognize common properties, templates

are generated for log lines that reach a certain similarity, because

otherwise a template would not provide any benefit.

In the remainder, the term template always refers to character-

based templates. Furthermore, we define the template of a log line

cluster as an ordered list of substrings that occur in the same or-

der in each log line of the cluster. In case of the given example

in Fig. 1, the template would be [database-, .server.d, .local
mysql-normal, R, BY status-, t]. The example shows that for the

words ORDER and GROUP only the character R remains part of the

template. While there exist several solutions to determine a tem-

plate for two log lines, it is not trivial to efficiently compute the

optimal template for a group of log lines. For two log lines, the

template can be generated by simply calculating the pairwise string

alignment applying, for example, the Levenshtein (LV) distance or

the Needleman-Wunsch algorithm. On the contrary, generating a

template for a group of log lines, a so-called multi-line alignment,

is complicated. The computational complexity to calculate the opti-

mal template for a group of log lines, applying comparison-based

algorithms that omit any heuristics, cannot be lower than O(nm ),
where n is the length of the shortest log line within a cluster andm
is the number of lines in a cluster. The computational complexity

is that high, because each line of a cluster has to be compared with

each other line. Due to the large amount of log data, which tem-

plate generators might have to process, both n andm can be large,

which results in a long runtime. On the opposite, for token-based

template generators this is not such an issue, because n then refers

to the number of tokens within the log lines, which is much smaller

than the number of characters. Thus, the goal of the approach we

propose is to efficiently compute an approximation of the optimal

template for a group of log lines, where each log line of the cluster

has to be processed only once.

Figure 2: Template generation process flow.

The approach we propose significantly reduces the computa-

tional complexity of computing a character-based log cluster tem-

plate. Figure 2 illustrates the process flow for generating templates

for log line clusters. The algorithm processes log lines sequentially

and thus follows an incremental approach, which has to handle

each line only once. In each step, the algorithm adapts the tem-

plate. In the following, the term current template refers to these

temporary templates. Initially, the first line of a cluster defines

the current template for the cluster. Next, the algorithm calculates

the pairwise alignment between the initial template, i.e., the first

line of the cluster, and the second line of the cluster. Afterwards,

the algorithm compares the current template with each remaining

line in the cluster and adapts the template accordingly. In order to

efficiently accomplish this adaptation, we propose four different

procedures for this task and compare their advantages and disad-

vantages. The runtime of these algorithms mainly depends on the

applied distance. Our approach uses the LV-distance, because of

its relatively low computational complexity of O(n2), compared to

other string metrics that can be applied for calculating pairwise

alignments. Hence, it is possible to process a cluster in less than

O(mn2) runtime, where n is the length of the longest line, which

takes the most time to be processed andm is the number of lines in

the cluster. Furthermore, it is possible to modify these algorithms by

replacing the LV-distance with any other string metric that allows

to calculate an alignment. Since the input data is pre-clustered, the

resulting template has a high similarity to the optimal template,

as shown in the evaluation presented in Sec. 5 by calculating two

different metrics that measure the accuracy of the algorithms.
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4 CLUSTER TEMPLATE GENERATOR
ALGORITHMS

This section introduces four different algorithms to generate chracter-

based templates for pre-clustered log data. The first two algorithms

follow quite different approaches, while the third one combines

the advantages of both and simultaneously mitigates their dis-

advantages. The fourth algorithm combines the token-based and

character-based approach. All proposed algorithms build on the

calculation of pairwise string alignments, which leverages string

metrics. In this paper, we focus on the Levenshtein-distance (LV-

distance). It is possible to replace the LV-distance by any other

distance, which allows to return the shared substrings of two com-

pared strings. We also experimented with the Needleman-Wunsch-

distance, but in comparison to the LV-distance the runtime is sig-

nificantly higher for an output of comparable quality.

The remaining section first describes the initial matching be-

tween the initial template, i.e., the first processed log line, which is

the one with the earliest timestamp, unless otherwise stated, and

the second line of a log cluster, which is the one with the second

earliest timestamp. This step is identical for all four algorithms.

Afterwards, we define the three purely character-based algorithms

merge, length and equalmerge, which enable matching a template

with a log line. Thus, they incrementally process all log lines of a log

cluster in temporal order to sequentially refine the template, so that

the resulting template matches all log lines of the cluster. Finally,

we introduce the token_char algorithm which combines the token-

based and character-based approach to calculate character-based

templates.

4.1 Initial matching
Since a template is defined as a list of substrings that occur in

the same order in each log line of a cluster, a string-list character-

izes each template. In the following, the term block refers to these

strings.

Initially, the first template is equivalent to the temporal first

line of the cluster. Thus, the string-list consists of a single string

which is equal to the first log line of the cluster. Next, the algorithm

calculates the LV-distance between the initial template, which is

a string, and the second log line of the cluster. The string-list of

the template, which is equal to the first line, is now adapted to the

substrings shared with the second line according to the LV-distance.

Figure 3 illustrates how the first matching of log lines is accom-

plished. The green blocks represent the template before and after

the matching, and the blue block corresponds to the log line which

the current template is matched to. Additionally, Alg. 1 describes

the implementation of the initial matching, which is a combination

of the calculation of the LV-distance between two strings and a

modification of the commonly used backtrace procedure to com-

pute the alignment of two strings based on the resulting scoring

matrix of the LV-distance calculation [4]. The algorithm described

in Alg. 1 takes as input the scoring matrix of the LV-distanceM and

the path in M that relates to the optimal alignment. For this, the

path is represented by the list of directions that have to be taken

through the scoring matrix during the backtrace procedure. In the

for loop, the algorithm extends the currently generated substring

with the currently processed character if the direction is diagonal

Figure 3: Initial matching.

and the compared strings have equal characters at the compared

position
1
. It ends the substring and appends an empty string to

list T , which represents the template, if the direction is up or down.
The latter is only done, if the last element of the list last(T ) is not
an empty string. In the returned list of substrings T , empty strings

represent gaps, which are defined as wildcards for the text between

two blocks of a template.

Algorithm 1 String_String_Matching(S1, S2)

1: M ← LV_Matrix(S1, S2);
2: path ← Path inM fromM[0][0] toM[len(S1)][len(S2)];
3: T ← [‘’];
4: x ← 0;

5: y ← 0;

6: for directions ∈ path do
7: if direction = diagonal then
8: x ← x + 1;
9: y ← y + 1;
10: if S1[x] = S2[y] then
11: last(T ).append(S1[x]);
12: else
13: T .append(‘’);
14: end if
15: else if direction = down then
16: x ← x + 1;
17: if last(T )! = ‘’ then
18: T .append(‘’);
19: end if
20: else if direction = right then
21: y ← y + 1;
22: if last(T )! = ‘’ then
23: T .append(‘’);
24: end if
25: end if
26: end for
27: return T

4.2 Merge algorithm
The merge algorithm is the most straightforward of the considered

algorithms. Figure 4 depicts the matching between a template and

a log line. First, the algorithm converts the template into a single

string by merging the blocks together, i.e., by concatenating the

strings in the list into a single string. Then, the LV-distance be-

tween this aggregated string and the log line is calculated. Thus,

the previous template is adapted, according to the LV-distance, so

that it matches also the new log line. Note, it is prohibited that the

algorithm deletes already existing gaps in the template, because if

1
Note, the direction is also diagonal when a character should be replaced.
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Figure 4:Merge algorithmmatching: The green blocks repre-
sent the template, the upper blue block themerged template
and the lower blue block the log line.

this happens the template does not fit previously processed lines

anymore. However, gaps are not considered as mandatory, i.e. they

do not have to occur in all lines. Algorithm 2 describes the linear

procedure consisting of three steps: (i) merge the current template

T1 to a single string S1, (ii) use Alg. 1 to compute the alignment T2
between the merged template S1 and the log line S2, and (iii) ensure
that no gaps that existed in the previous templateT1 are missing in

the resulting template T .

Algorithm 2 Merge(T1, S2)

1: S1 ← Merge_Template _to_String(T1);
2: T2 ← String_String_Matching(S1, S2);
3: T ← Align_Gaps(T1,T2);
4: return T

4.3 Length algorithm
The merge algorithm always calculates the LV-distance for a log

line and the current template, which results in a rather long runtime.

Hence, the length algorithm instead only calculates the LV-distance

for blocks and corresponding substrings of the log line. This re-

duces the runtime, because the length of the strings, for which the

algorithm calculates the LV-distance, is shorter.

The length algorithm processes the blocks in order of their

lengths, beginning with the longest one. Since the algorithm does

not process the blocks from left to right and calculates the LV-

distance between blocks of the template and corresponding sub-

strings of the log line, it first has to localize which block corresponds

to which part of the log line. The localization process is described in

more details later in this section. Processing the blocks in order of

their length prohibits that smaller blocks prevent larger ones from

becoming part of the new template, or to force the algorithm to

split them. Therefore, the template tends to include more characters

which results in a higher coverage, i.e., on average more characters

of the log lines are part of the template of the corresponding cluster.

Furthermore, longer blocks are considered more significant for a

cluster than shorter ones.

Figure 5 supports the description of the length algorithm. The

algorithm starts with the localization procedure. For that purpose,

it marks all blocks of the template that occur as identical substrings

in the log line, starting with the longest one. Figure 5 depicts this in

the first two lines by connecting block 1 and 3 with equal substrings

in the template. During the marking process, the algorithm does

not consider the whole line for all blocks, but only a valid section to

sustain the order of the blocks. For example, the second processed

block .lxcal in Fig 5, can only mark a substring in the section

.d03.arc.local.mysql-normal, because it has marked blocks to

the left and to the right. Empirical studies support to only consider

blocks consisting of more than two characters in this phase to avoid

that larger blocks are excluded from the resulting template. This

leads to templates of higher quality.

Once the algorithm marked all blocks of the template that identi-

cally occur as substrings in the log line, it processes the remaining

blocks of the template, again in the order of their lengths starting

with the longest. Lines three to five in Fig. 5 visualize this procedure.

Each unmarked block of the template is matched with the corre-

sponding section of the log line. As Fig. 5 illustrates, the matched

block gets either split or deleted according to the LV-distance. Af-

ter the matching, the substring that matched the block becomes a

marked section and is not further considered in the matching pro-

cess. For example, the algorithm matches the first processed block

.lxcal in the lower part of Fig 5 with the corresponding substring

.local. Thus, the algorithm marks this substring, which is illus-

trated by the dashed rectangle. Therefore, the algorithm matches

the third block with a shorter section than the first block.

Note, if at any point during this procedure two blocks have the

same size, the algorithm processes the leftmost one first. The fact

that similar log lines usually differ more from each other towards

the end, supports this decision. As Alg. 3 demonstrates, in opposite

to the merge algorithm, the input template is modified and returned

and not generated from scratch. Therefore, the gap alignment can be

omitted. The length algorithm consists of two for loops, one for the

marking process and a second one that matches unmarked blocks.

Hence, Alg. 3 applies Alg. 1 to match all blocks (str in the Alg. 3)

from the current templateT1, that have not been marked yet, to cor-

responding substrings in log line S2. Once a substring of S2 has been
matched, it is marked so that no other block of T1 can be matched

to it. Algorithm 4 describes the function CORRESPONDING_SUBSTR.
It returns for a block of the template T [j] the corresponding sub-

string in log line S . Note, if there is no corresponding substring, the
algorithm returns an empty string.

Algorithm 3 Length(T1, S2)

1: for str ∈ T1 ordered by length do
2: if str ⊆ corresponding_substr(S2, str ) then
3: Mark str in T1 and S2;
4: end if
5: end for
6: for unmarked str ∈ T1 ordered by length do
7: replace str with String_String_Matching

(str , corresponding_substr(S2, str ));
8: Mark the matched string in S2;
9: end for
10: return T1

Because of the marking procedure of the length algorithm, the

algorithm has to calculate the LV-distance only for the remaining

unmarked blocks. Therefore, the runtime of the length algorithm is

significantly lower than the runtime of the merge algorithm, which

calculates the LV-distance for the whole template and log line.

Since the log lines are considered pre-clustered, they have a high

similarity, which means that the the marking process significantly
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Algorithm 4 corresponding_substring(S,T [i])

1: if ∃ marked block T [j] in T , with j < i then
2: j ← Next smaller index of a marked block in T ;
3: m ← Index of last marked character of T [j] in S ;
4: else
5: m ← 0;

6: end if
7: if ∃ marked block T [k] in T , with k > i then
8: k ← Next higher index of a marked block in T ;
9: n ← Index of first marked character of T [k] in S ;
10: else
11: n ← len(S);
12: end if
13: return S[m,n]

Figure 5: Length algorithm marking and matching: The
green blocks represent the template and the blue blocks the
log line. The upper part illustrates the marking. The lower
part visualizes the matching of the remaining blocks. The
horizontal brackets highlight the sections of the log line
which are matched with the blocks. The dashed rectangle in
the lower blue block represents the marked section which
originates from the matching with block 1 from above.

reduces the runtime. However, while the marking process reduces

the runtime, it might also reduce the quality of the template, because

thematching is optimizedwith respect to sections within the strings

and not globally over the whole strings. The evaluation discusses

this in Sec. 5.7.

4.4 Equalmerge algorithm
Figure 6 depicts the matching between a template and a log line

applying the equalmerge algorithm. The following algorithm com-

bines the features of the merge and the length algorithm. Equally

to the length algorithm, the equalmerge algorithm first marks the

blocks, which occur as substrings in the log line. After the marking,

the algorithm merges the blocks remaining between the marked

blocks of the template identical to the merge algorithm. The algo-

rithm merges the unmarked blocks according to their correspond-

ing section. Hence, for example, it merges in line three of Fig. 6

the remaining unmarked blocks between block 1 and block 2 from

line one to a single block. Finally, the newly created blocks are

matched with the related sections of the log line. These blocks are

split or gaps are included according to the LV-distance. Equally

to the merge algorithm, it is prohibited that the algorithm deletes

gaps.

Algorithm 5 and Alg. 3 show that the implementations of the

equalmerge and the length algorithm are similar to each other and

Figure 6: Equalmerge algorithm matching.

differ only in the second for loop. In the second for loop of the

equalmerge algorithm adjacent unmarked strings, i.e. unmarked

strings between marked stings, are aggregated to adj_strinдs . Af-
terwards, Alg. 2 is applied to compute the alignment (T3) between
adj_strinдs and the corresponding substring of the log line S2. Fi-
nally, alignment T3 replaces the strings in the current template T1
that have been aggregated to adj_strinдs .

Algorithm 5 Eqalmerge(T1, S2)

1: for str ∈ T1 ordered by length do
2: if str ⊆ corresponding_substr(S2, strinд) then
3: Mark str in T1 and S2;
4: end if
5: end for
6: for unmarked str ∈ T1 do
7: adj_strinдs ← adjacent unmarked strings of str in T1 in-

cluding str itself;
8: T3 ← Merge(adj_strinдs, corresponding_substr(S2, str ));
9: Replace adj_strinдs in T1 with T3;
10: Mark T3 and the matched string in S2;
11: end for
12: return T1

The equalmerge algorithm implements a refinement of the length

algorithm. Since it calculates the LV-distance between the merged

blocks of the template and the corresponding substring of the log

line, it has a slightly longer runtime than the length algorithm,

but simultaneously the resulting template inherits the higher qual-

ity of the merge algorithm. At the same time, the runtime of the

equalmerge algorithm is shorter than the one of the merge algo-

rithm, while the decrease of the quality of the template is smaller

than the one of the length algorithm.

4.5 Token_char algorithm
Since most template generators operate token-based, we developed

a hybrid approach, which should combine the advantages of both

token-based and character-based approaches. While, for example,

token-based templates are easier to convert into parser models,

character-based templates provide a more detailed description of

log line clusters and provide more accurate signatures. Thus, to

accomplish a hybrid template, we separate the template into two

layers. The first layer comprises the token-structure, which contains

the token-list that stores the tokens. The second layer composes the

character-structure. Therefore, a character-structure is assigned to

each gap, which contains a character-based template for the tokens

that are replaced by the gap. In the end, the token and the character

structure are merged to a character-based template.
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Figure 7 depicts the procedure of the matching performed by the

token_char algorithm and supports the algorithm’s description. The

initial step of the token_char algorithm differs from the previous

algorithms. First, the algorithm converts all log lines of a cluster

into token-structures, i.e., lists of tokens. Therefore, the algorithm

splits the log lines into substrings at predefined delimiters. Hence,

this algorithm inherits the disadvantage of token-based template

generators, which have to split all log lines at the same delimiters,

whether it is useful or not. Next, between each token, a character-

structure is established which initially contains the corresponding

delimiter. Finally, the token-char-structure of the temporal first log

line represents the initial template.

The following describes the matching procedure between a

token-char-template and the token-char-structure of a log line.

In the first step, the algorithm matches the two token-structures.

Therefore, the algorithm searches for tokens in the log line’s token-

structure that correspond to the tokens in the token-structure of

the template. The distance metric the algorithm uses is a mod-

ification of the LV-distance, which treats tokens like characters

and weights their value for the accuracy of the template by their

length. This is necessary, because the normal LV-distance applied

to token-structures would provide the template with the most to-

kens, without taking into account that a token consisting of a larger

number of characters supports a template with higher coverage.

Otherwise, a template with low coverage would be accepted as

long as it consists of a large number of tokens. Thus, our algorithm

matches the tokens according to the LV-distance with the difference,

if two tokens of the template match the same corresponding token

of the log line’s token-structure, the score assigned by the algorithm

for computing the LV-distance is decreased by the length of the

token. This is reasonable, because when calculating the LV-distance,

positive scores represent penalties, i.e., positive values correspond

to required modification operations when transforming one string

into another. Note, the result is not a distance, but a sufficient score

for this algorithm. The first two lines of Fig. 7 depict the matching

of the token-structures.

Next, the algorithm converts the tokens of the token-structure of

the template which do not match any of the log line’s into character-

structures and merges all adjacent character-structures. Hence,

there exists exactly one character-structure between two tokens

as line 3 of Fig. 7 shows. Finally, the char-structures of the current

template are matched with the corresponding, so far unmatched,

parts of the log line. For this purpose, any of the previously de-

scribed algorithms for generating character-based templates can

be used. Lines 3 and 4 in Fig. 7 visualize the final step and line 5

shows the resulting template.

For the evaluation of the algorithm, we chose the merge algo-

rithm, because it provides the most accurate templates among the

algorithms, as the evaluation in Sec. 5 shows. The disadvantage of

the longer runtime is mitigated, because of the shorter length of

the compared strings.

Algorithm 6 describes the implementation of the token_char

algorithm. First, the algorithm splits log line S2 into tokens and

transforms it into a token structure T2. Then it performs the token

matching between the current template T1 and the token-structure

of log line T2. In this step, the algorithm also generates the charac-

ter structure of the log line. The algorithm compares the character

Figure 7: Token_char algorithm matching. Dark blue parts
represent token-structures and light blue parts character-
structures. Colons represent any fixed set of predefined de-
limiters.

structures strinд_template1 of the current template and their cor-

responding character-structures strinд_template2 of the log line in
a for loop. For that purpose, the algorithm iterates over the gaps

of the token-structures T1 and T2, which as mentioned refer to

the character-structures. For matching the character-structures,

the algorithm applies Alg. 2. Finally, the resulting alignment of the

character-structures replaces the corresponding character-structure

strinд_template1 in the current template T1.

Algorithm 6 Token_char(T1, S2)

1: T2 ← Split_into_tokens(S2);
2: Token_Matching(T1,T2);
3: for (strinд_template1, strinд_template2) ∈ Gaps(T1,T2) do
4: Replace strinд_template1 in T1 with

Merge(strinд_template1, strinд_template2);
5: end for
6: return T1

5 EVALUATION
The following section presents the evaluation of our approach for

generating character-based cluster templates. First, we describe the

data used for the evaluation. Next, we define a similarity score that

we calculate alongside the F -score to asses accuracy and quality

of the algorithms introduced in Sec. 4. Finally, we interpret and

discuss the evaluation results. All evaluations have been carried

out on a Notebook with an Intel Core i7-5600U CPU 2.60 GHz and

16 GB RAM running Windows 7 64-Bit. The assessed algorithms

have been implemented in Python 3.7.

5.1 Test data
For the evaluation of our approach, we use three different data

sets. This demonstrates the broad applicability of the approach

for various log data types. The first data set, we refer to as DS-
A, originates from a network that runs a MANTIS Bug Tracker

System
2
. Therefore, the data set contains logs from an Apache Web

server hosting the MANTIS platform, a MySQL database, a reverse

proxy and a firewall, as well as a mail server. The log messages of

these systems are aggregated using syslog. The data set consists

of 1.6 million log lines that reflect 10 hours of system usage. The

second data set, we refer to as DS-B, derives from the same system.

DS-B includes the syscalls of the system, which have been collected

2
https://www.mantisbt.org/
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Table 1: Properties of the subsets of the described data used
for evaluation. For the line length, the number of words
(space separated substrings) and the cluster size, the table
provides values for minimum, average and maximum.

DS-A DS-B DS-C

data set size 10.000 133.000 200.000

line length 60 / 135.94 / 1959 79 / 211.10 / 328 92 / 139.03 / 311

word # 3 / 12.60 / 133 8 / 32.67 / 58 9 / 13.72 / 31

cluster # 352 180 21

cluster size 1 / 28.41 / 605 1 / 741.47 / 13857 1 / 9523.81 / 46585

using the auditd service. The third data set, we refer to as DS-
C, includes logs from a Hadoop File System running on a 203-

node cluster on Amazon’s EC2 platform [13]. DS-C consists of 11

million lines that reflect almost 3 days of system behavior. Since the

evaluated algorithms require pre-clustered data, we clustered the

data applying the incremental clustering approach from [12], using

a similarity threshold of 0.9 for DS-A and DS-B, and 0.6 for DS-C.

We selected the similarity threshold with respect to the structure

and complexity of the data. We chose a lower similarity for DS-C,

because the data set includes larger variable parts and a higher

similarity threshold would lead to a large number of small clusters

that would represent an inappropriate cluster arrangement that

includes many similar clusters.

5.2 Evaluation metrics
We used two different evaluation metrics to assess and compare the

different algorithms. The first one is a score for similarity, which is

defined in the following, and the second one is the F -Score.
The Sim-Score measures the similarity between the log lines

of a cluster and its corresponding template. The algorithms for

generating character-based templates provide templates that match

all log lines of a cluster. Therefore, the ratio between the number

of characters the template consists of and the average log line

length is a measure for similarity between a template and the log

lines of a cluster. In the Sim-Score, the average log line length

corresponds to the mean of the number of characters the log lines

of a cluster consist of. Consequently, the resulting Sim-Score for

each algorithm is the mean of these similarities. The Sim-Score is

calculated as shown in Eq. (1), where n is the number of clusters,

mi the number of log lines in the i-th cluster, Ti the template of

the i-th cluster, Li , j is the j-th log line of the i-th cluster and | · |

denotes the number of characters of a template or a log line.

Sim-Score =
1

n

n∑
i=1

|Ti |
1

mi

∑mi
j=1 |Li , j |

(1)

The Sim-Score is an evaluation metric that indicates how accu-

rate the templates are. One advantage of the Sim-Score is that it

does not rely on any additional information about the clusters, such

as a ground truth, which defines the optimal template. Thus, it can

be calculated directly after generating templates, for any data set.

Table 1 presents properties of the data we used for evaluating the

Sim-Score.

The second metric we used to evaluate the proposed algorithms

for generating character-based templates is the F -score (see Eq. (2)).
The F -Score allows an assessment of the accuracy of the generated

templates. However, in opposite to the Sim-Score, the calculation

of the F -Score requires a ground-truth to identify true positives

(TP), false postives (FP) and false negatives (FN), as Eq. (2) indicates.

Therefore, we first had to create a character-based ground truth for

all data sets.

F -score =
2TP

2TP + FN + FP
(2)

Furthermore, we defined the terms TP, FP and FN
3
:

• TP are defined as the characters which appeared in the same

order in both the ground truth and the created templates.

• FP are characters, which occur in the template but not in the

ground truth.

• FN are characters, which occur in the ground truth but not

in the template.

FP are an issue that cannot simply be ignored. The major reason

for FP are over-fitting templates. The algorithms tend to create

overly accurate templates, because they only generate them from

the perspective of the log lines that are associated with a cluster

and not taking other knowledge into account as humans would

do. Reasons for this are characters that actually represent variable

parts of a log line, but occur in each log line of a cluster. However,

these characters are not part of the ground truth, because they,

for example, refer to an IP address or a part of a timestamp, which

might only be static for the training data and thus are not considered

static in the ground truth. An example is a variable within the same

cluster that takes the values 192.67.200.155 and 192.67.200.12.
In this case, 192.67.200.1 becomes part of the template, although

the last character 1 belongs to a variable part of a log line. Hence, the
resulting template would not match the IP address 192.67.200.2,
which might be also valid.

5.3 Sim-Score evaluation results
The following section discusses the results of the evaluation of the

Sim-Score. As previously mentioned, the calculation of the Sim-

Score does not require any additional information, such as a prede-

fined ground truth. Thus, the Sim-Score is suitable to be calculated

for any log data set. Furthermore, to compare the character-based

template generators with a token-based approach, we also gen-

erated token-based templates, using the part of the token_char

algorithm that generates the token-structure of the template.

Tables 2, 3 and 4 present the evaluation results of the Sim-Score

for the different template generator algorithms using the data sets

described in Tab. 1. As expected, the proposed character-based

algorithms yield a much higher Sim-Score than the token-based

approach. However, the token_char provides comparable results

to the pure character-based algorithms. The differences between

the Sim-Scores of the character-based algorithms are so small that

they can be neglected. Nevertheless, the results of the runtime are

of greater significance. The merge algorithm shows the longest

runtime among all tested algorithms. This is the case, because all

other character-based algorithms first divide the line into shorter

segments by marking parts of the line that are equal to tokens

of the template. Then, they match the remaining shorter parts of

the line and the template by calculating the LV-distance. Whereas,

3
Since gaps can be optional they do not influence the Sim-Score.
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Table 2: Sim-Score comparison on DS-A

merge length equalmerge token_char token

Sim-Score 96.38% 96.24% 96.37% 95.18% 85.27%

Time (s) 435.20 23.46 25.52 29.54 8.49

Table 3: Sim-Score comparison on DS-B

merge length equalmerge token_char token

Sim-Score 91.40% 90.71% 91.42% 91.42% 77.27%

Time (s) 35179.35 55.56 63.37 843.51 366.76

Table 4: Sim-Score comparison on DS-C

merge length equalmerge token_char token

Sim-Score 71.96% 70.41% 71.95% 71.96% 52.67%

Time (s) 11207.57 344.21 227.22 1387.87 154.14

the merge algorithm calculates the LV-distance for the whole log

line and the whole template. While the length and the equalmerge

algorithms showed a comparable runtime on the data sets DS-A

and DS-B, the equalmerge algorithm outperforms all the others on

DS-C. Due to the lower similarity threshold during clustering and

larger variable parts in the log data, Sim-Scores for DS-C decrease

for all algorithms. Furthermore, the larger variable parts in DS-C are

the reason, why the equalmerge algorithm outperforms the length

algorithm. While the equalmerge algorithm merges the blocks that

are not marked and then calculates the LV-distance, the length

algorithmfirst has to localize all blocks of the current template in the

log line at hand. Due to the large variable parts the number of blocks

the template consists of increases in every step. Furthermore, the

different sizes of the data sets affect the token_char approach more

than the others. The reason for this is, that the token_char algorithm

has to do the matching for the token-structure and all character-

structures of the template. The runtime of the pure token-based

approach is rather long when processing DS-B. This is, because of

the long lines consisting of a large number of tokens.

5.4 Scalability
The next section summarizes results on the evaluation of the scala-

bility of the different algorithms. Figure 8 visualizes the results for

the different algorithms, showing the number of lines on the x-axis

and the runtime on the y-axis. For the evaluation of the scalability,

we chose a cluster from DS-B that comprises more than 1000 log

lines. Then, we measured the runtime it took to calculate the tem-

plate for the cluster for 5 to 1000 lines in steps of 50 lines. Figure

8 demonstrates that the runtime of all algorithms scales linearly

with respect to the cluster sizem, which results in a computational

complexity of O(m). Figures 8b and 8c demonstrate that the length

and the equalmerge algorithm scale equally well with respect to

the runtime and gradient, followed by the token_char algorithm

in Fig. 8d. The merge algorithm, see Fig. 8a, has the worst runtime

and gradient.

5.5 Cluster arrangement
We also investigated the impact of the order of the log lines in a

cluster on the resulting template and the process of generating it.

Table 5: Cluster arrangement

original maxfirst maxdist mindist

merge Sim-Score 96.38% 96.44% 96.43% 96.47%

length Sim-Score 96.24% 96.41% 96.40% 96.26%

equalmerge Sim-Score 96.37% 96.42% 96.41% 96.44%

token_char Sim-Score 95.18% 96.38% 96.37% 96.38%

merge last change 82.76% 76.20% 71.35% 93.55%

length last change 82.06% 74.96% 70.57% 92.93%

equalmerge last change 82.21% 74.94% 70.66% 93.06%

token_char last change 70.87% 67.84% 67.25% 78.63%

Therefore, we changed the order of the log lines in the clusters as

follows:

(i) The original order (original),

(ii) startingwith the two lines that have themaximumLV-distance

in the whole cluster and the following lines have the original

order (maxfirst),

(iii) ordering the lines by the LV-distance to each other start-

ing with the line that has the largest distance to the others

(maxdist),

(iv) ordering the lines by the LV-distance to each other starting

with the line that has the smallest distance to the others

(mindist).

Table 5 summarizes the results of the cluster arrangement evalu-

ation carried out on the first 10.000 lines of the data set DS-A. The

lower part of the Table shows after processing which percentage of

log lines in a cluster the template does not change any more. Our

evaluation proves, that the order has impact on the number of pro-

cessed log lines after which the template does not change anymore

and therefore on the runtime. Ordering the lines by the LV-distance

to each other starting with the line that has the largest distance to

the others (maxdist) showed the best results, closely followed by

starting with the two lines that have the maximum LV-distance and

the following lines have the original order (maxfirst). Those two

approaches improve the runtime in opposite to keeping the origi-

nal order, while using the mindist approach increases the runtime.

However, there was virtually no impact on the Sim-Score as the

upper part of Tab. 5 points out. Since ordering the lines within a

cluster by their LV-distance is computational expensive withO(nn ),
where n is the number of lines, the runtime improvement can only

be realized when the lines are already in the correct order.

Additionally, Fig. 9 visualizes the progression of the change in

the number of characters the template of a representative cluster

consists of. Therefore, we plotted the number of characters the

current template exists of over the number of processed lines for the

four different cluster arrangements. The figure demonstrates that

for the maxfirst and maxdist arrangement the template gets stable

after a few lines, while the mindist arrangement, requires major

changes in the template towards the end. The original arrangement

lies between the others.

5.6 Evaluation of different data set sizes
In this section, we evaluate the influence of the data set size on the

resulting templates. Therefore, we compared the Sim-Score of the
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(a) Merge algorithm (b) Length algorithm (c) Equalmerge algorithm (d) Token_char algorithm

Figure 8: Runtime comparison.

Figure 9: Progression of cluster template character number

Table 6: Evaluation of different datasets.

data size 10K 50K 1600K

merge Sim-Score 96.38% 95.79% 94.99%

length Sim-Score 96.24% 95.44% 94.40%

equalmerge Sim-Score 96.37% 95.71% 94.73%

token char Sim-Score 95.18% 93.53% 93.26%

whole data set DS-A, a subset consisting of the first 10.000 lines and

a subset of the first 50.000 lines. The results, summarized in Tab. 6,

indicate a small decline in the Sim-Score with increasing data set

size. This can be explained as follows: The larger the data set, the

more log lines are assigned to each cluster. Therefore, the similarity

of the log lines within a cluster decreases, which as described in

Sec. 5.4, affects the Sim-Score of the template. But, the lower Sim-

Scores do not refer to templates of lower quality. Indeed, while the

Sim-Score only slightly decreases, over-fitting is reduced. Hence,

the quality of the templates actually increases, because of the more

diverse set of log lines, which more accurately reflects the system

behavior. Finally, we can conclude that the data set size does not

strongly affect the quality of the resulting template.

5.7 Robustness
Furthermore, we evaluated the robustness of the algorithms, which

is especially important for the length and the equalmerge algo-

rithm. Since these two algorithms first mark parts of the template

that equally occur in the currently processed log line, they imitate

longest common subsequence [1]. This might cause problems, if

the lines within a cluster are different, but substrings in different

positions are marked as equal, due to the fact that there are many

variable parts in the log lines. Considering the strings ayyaa, aayya,
aaa, the optimal template would be a[*]a[*]a, but because the
first created template would be [*]ayya[*], the final template be-

comes [*]a[*]a[*], which leads to a lower similarity between the

strings and the template.

Additionally, the localizing step in the length and equalmerge

algorithm could be erratic, when the template includes two equal

blocks, that only occur once in the currently processed log line.

Therefore, a false marking can happen. For example, considering

the strings stringstring, string string and tring string.
The first two yield the template string[*]string, but because the
algorithm localizes the first block in the rearmost part of the log line,

the second block is marked with the empty string. Thus, the created

template would be [*]string[*], although [*]tring[*]string
would be the the optimal one.

Hence, we ran the algorithms on the first 10k lines of data set DS-

A, which was clustered using different similarity thresholds. The

lower the threshold during clustering, the more dissimilar are the

log lines within a cluster. In this way we can evaluate the effects of

the marking step in the length and equalmerge algorithm, because

which blocks are marked as substrings in the log line depends on

the similarity of the log lines in a cluster. The effects can be seen

when comparing the Sim-Score of the length and the equalmerge

algorithm with the results of the merge algorithm, which does not

include the marking step.

Table 7 demonstrates that there is no extensive decrease of the

Sim-Score in either of the algorithms, which is only the case if the

marking had a severe impact. Therefore, all of the algorithms can

be considered robust.
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Table 7: Robustness evaluation for different minimum sim-
ilarities between log lines within a cluster.

similarity 0.9 0.8 0.7 0.6 0.5

merge 96.38% 91.14% 82.76% 74.97% 71.09%

length 96.24% 90.48% 81.25% 73.76% 68.49%

equalmerge 96.37% 90.98% 82.34% 74.31% 70.64%

token_char 95.18% 90.47% 82.04% 73.85% 69.41%

Table 8: Test against character-based ground truth:H F -score
is the F -score for the Hadoop data set and TB F -score the F -
score for the thunderbird data set.

merge length equalmerge token_char token GT

H F -score 0.9910 0.9902 0.9910 0.9910 0.8853

TB F -score 0.9958 0.9941 0.9958 0.9958 0.9296

5.8 F -score evaluation
Since the F -score requires a ground truth, we chose data sets from

Hadoop and Thunderbird available on the Internet [7], where these

data sets each have 2000 lines and the corresponding token-based

ground truths are also available. We created the character-base

ground truths, which are the optimal template, based on the token-

based ground truths.

The F -score was calculated for each algorithm as described in

Sec. 5.2. Furthermore, we also tested the token-based ground truth

against the character-based one. Since the token-based ground truth

(token GT) is the optimum which token-based template generators

can achieve, the resulting F -Score is the maximum any token-based

approach can reach.

Table 8 presents the results of the F -score evaluation. The evalua-
tion proves that all character-based algorithms yield more accurate

templates than a token-based ever could. Merge, equalmerge and to-

ken_char provide the best F -score, followed by the length algorithm
and the token ground truth. The F -scores of merge and equalmerge

are the same, because they both created the same templates for

these sets of log data. The token_char algorithm also had the same

F -score, but yielded different templates, because it placed the gaps

differently.

5.9 Feature Analysis
Finally, we assess the features of the different algorithms with re-

spect to performance and accuracy, which are summarized in Tab.

9. The merge algorithm provides the most accurate template ac-

cording to Sim-Score and F -score. However, it lacks performance

and therefore should not be applied for time critical tasks. The

length algorithm provides comparable accurate templates, while

optimizing performance in opposite to the merge algorithm. The

performance boost is achieved by marking blocks of the current

template that occur as substrings in the log line. Therefore, the

length of the strings for which the LV-distance has to be calculated,

can be significantly reduced. The equalmerge algorithm combines

the length and the merge algorithm and performs almost as good

as the length algorithm, while providing templates that are almost

as accurate as the ones computed by the merge algorithm. The

Table 9: Comparison of performance and accuracy.

Algorithm Performance Accuracy

merge - - ++

length + +

equalmerge + ++

token_char ∼ +

token ++ - -

token_char algorithm performs slightly better than the merge al-

gorithm, but is surpassed by the performance of the length and

equalmerge algorithms. Moreover, the templates provided by the

pure character-based approach are more accurate. Hence, we rec-

ommend for any application to apply the equalmerge algorithm

instead of the token_char approach. The pure token-based approach

shows the best performance, while providing the least accurate tem-

plates. Additionally, all the disadvantages mentioned in the Sec. 1

have to be considered when applying token-based approaches for

generating templates.

6 CONCLUSION AND FUTUREWORK
In this paper we introduced a novel approach for generating charac-

ter-based templates for computer log data. The goal was to provide

meaningful cluster descriptions that support further manual and au-

tomatic analysis of clustered log data, such as review of the current

system behavior by a system administrator and parser generation

to enable, for example, anomaly detection. Hence, to achieve this

goal, we had to develop a method to calculate multi-line alignments

for any group of strings. For this purpose, we designed four differ-

ent algorithms that combine comparison-based procedures with

heuristics to compute approximations of the optimal multi-line

alignments.

In a detailed evaluation carried out on three different log data

sets, we calculated a newly defined Sim-Score and the F -Score for
the four different approaches. The results show the high quality of

the character-based templates. All algorithms reached an F -Score
higher than 0.99. Furthermore, we demonstrated linear scalability

with respect to the number of lines within a cluster and showed

the robustness of our algorithms. We also analyzed the influence

of the length of the data sets and the processing order of the log

lines. Finally, we conclude that the equalmerge approach yielded

the best results regarding performance and accuracy.

In the future, we plan to apply the proposed approach for gener-

ating character-based templates for log clusters, with purpose of

improving the generation of log data parsers and to enhance time

series analysis carried out on log data.
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