
AECID-PG: A Tree-Based Log Parser Generator To
Enable Log Analysis

Markus Wurzenberger, Max Landauer, Florian Skopik
Austrian Institute of Technology, Center for Digital Safety and Security

Giefinggasse 4, 1210 Vienna, Austria
firstname.lastname@ait.ac.at

Wolfgang Kastner
Vienna University of Technology

Treitlstrasse 3, 1040 Vienna, Austria
k@auto.tuwien.ac.at

Abstract—Understanding a computer system’s or network’s
behavior is essential for various tasks such as fault diagnosis,
intrusion detection or performance analysis. A key source of
information describing a system’s current state is log data.
However, accessing this information for further analysis is often
complicated. Usually, log data is available in form of unstructured
text lines and there exists no common standard for the appea-
rance of logs. Hence, log parsers are required to pre-process log
lines and structure their information for further analysis. State of
the art log parsers still apply pre-defined lists of regular expres-
sions, which are linearly processed and thus render online log
analysis infeasible. Furthermore, defining log parsers manually is
a cumbersome and time consuming task. Therefore, in this paper
we propose AECID-PG, a novel log parser generator. AECID-PG
implements a density-based approach to automatically generate a
tree-like parser, which reduces the complexity of log parsing from
O(n) to O(log(n)). We use real log data to evaluate AECID-PG
and compare its parsing capabilities to other parser generator
approaches by calculating the F -score. We prove AECID-PG’s
broad applicability and finally demonstrate its functionality in a
real world setting.

Index Terms—log data analysis, log data parsing, parser
generator

I. INTRODUCTION

Log data is the lowest common denominator of data that
any piece of software can produce to inform about its ope-
rational state. Thus, log data is a key information source for
many different applications such as intrusion detection, fault
diagnosis, performance evaluation, predictive maintenance and
network behavior analysis. Nowadays, all these techniques
are applied in virtually any type of system, being Web-based
systems, enterprise IT, cyber physical systems (CPS), Industry
4.0, or the Internet of Things (IoT). However, despite its broad
application, there is no common standard for the structure and
appearance of log data. As a consequence, it is rather difficult
to make data automatically accessible for further analysis with
no or minimal manual effort.

Log data occurs in form of unstructured text lines that
describe a certain system or network event. Thus, log parsing
is an important task prior to log analysis. A log parser knows
the syntax, i.e. unique structure, of the data produced by a
monitored system or service. Log parsers carry out preposses-
sing steps to enable further analysis, such as signature and rule
verification or anomaly detection. Therefore, parsers sanitize

time stamps, disassemble log lines into meaningful tokens,
e.g., whit-space separated strings, assign an event type to each
line and filter out lines that are irrelevant for further analysis.

However, the following major challenges occur when par-
sing log data: First, today’s modern systems and networks pro-
duce large amounts of log data, up to several thousands per se-
cond in a medium-sized infrastructure. Thus, parsing log lines
must be highly efficient to enable online log analysis, which
is especially necessary for critical tasks, including intrusion
detection and safety monitoring. Current log parser approaches
apply sets of distinct regular expressions to parse log data. This
is quite inefficient, with a computational complexity of O(n)
per log line, where n is the number of regular expressions.
While this is acceptable for forensic analysis, it is not for
online processing. Second, each device and network is unique
and therefore shows a unique system behavior, because of the
users who operate it and the services and applications it runs.
Hence, every system needs specific parsers. Furthermore, the
complexity of today’s networks increases fast and technologies
evolve quickly. As a result, also logging infrastructures and the
syntax of log lines changes frequently. Consequently, it is a
cumbersome and time consuming task to define and maintain
log parsers manually. In this paper, we present the following
contributions to address these challenges:

(i) A tree-like parser that could be seen as a single very
large regular expression that models a system’s log data.
During parsing a log line, the parser leaves out irrelevant
parts of the model and reduces the complexity for log line
parsing to O(log(n)).

(ii) AECID-PG, a density-based [1] log parser generator
approach that automatically builds a tree-like log parser.
In opposite to many other parser generator approaches,
AECID-PG does not rely on distance metrics. Instead, it
uses the frequency with which log line tokens occur.

Since, AECID-PG does not rely on the semantics of the
monitored log data, it can be applied in any domain to any
log data that has a static syntax. Furthermore, the tree-like
structure of the parser allows to address log line parts that
include interesting information efficiently, using the relating
path of the parser tree. This simplifies accessing information
in log lines and speeds up further analysis of the log data,
such as rule and signature verification.978-3-903176-15-7 © 2019 IFIP



The remainder is structured as follows: Sect. II describes
the concept of the proposed parser. Next, Sect. III introduces
the parser generator AECID-PG, and defines the underlying
model to obtain the structure of a considered log file. Sect.
IV evaluates AECID-PG, compares it with state of the art log
parser generators and includes an application scenario. Finally,
Sect. V summarizes related work and Sect. VI concludes the
paper.

II. TREE-BASED PARSER CONCEPT

In [2] Wurzenberger et al. conceptually describe a log data
parser that leverages a tree-like structure. This kind of parser
takes advantage of the inherent structure of log lines.

Developers may freely choose the structure of log lines
produced by their services or applications. There are no
commonly accepted standards, and industry best practices
only define certain aspects of log syntax. For example, the
syslog [3] standard dictates that each log line has to start
with a time stamp followed by the host name. The rest of
the syntax however can be chosen without any restrictions.
It is noteworthy that log lines usually consist of static and
variable tokens, which are separated by delimiters, such as
white spaces, semicolons, equal signs, or brackets.

Applying standards, e.g., syslog, causes log lines produced
by the same service or application to be similar in the
beginning and differ more towards the end of the lines. Conse-
quently, a parser tree comprises a common trunk and branches
towards the leaves, see Fig. 1. The parser tree represents a
graph theoretical rooted out-tree. This means, during parsing,
it processes log lines token-wise from left to right and only
parts of the parser tree that are relevant for the log line at hand
are reached. Hence, this type of parser avoids passing over the
same log line more than once as would be done when applying
distinct regular expressions. As a result, the complexity for
parsing reduces from O(n) to O(log(n)). Eventually, each
log line relates to one path, i.e. branch, of the parser tree.

Figure 1 visualizes a part of a parser tree for ntpd (Network
Time Protocol daemon) logs. This example demonstrates that
the tree-based parser consists of three main building blocks.
The oval orange nodes represent tokens with static text pat-
terns. This means that in all corresponding log lines, a token
with this text pattern has to occur at the position of the node
in the tree. For example, the first node represents the service
name, which in case of syslog data, has to occur in all log lines
generated by the ntpd service, after a preamble consisting of a
timestamp and the hostname. Pentagonal blue nodes represent
nodes that allow variable text until the next separator or static
pattern along the path in the tree occurs. For example, the
second node relates to the process ID (PID), which is variable
and separated by square brackets. The third building block is
a branch element. The parser tree branches, when in a certain
position only a small number of different tokens with static
text occur. This is the case, for example, when a component
generates log lines for different events, as in Fig. 1 after the
third node. Furthermore, variable nodes can have properties,
and allow only specific input, such as numbers or IP-addresses.

Besides the fact that a tree-based parser processes log lines
more efficiently than a set of distinct regular expressions, the
tree-like structure allows to quickly access information stored
in single tokens for further analysis by using the path that
addresses the token.

III. AECID-PG: TREE-BASED LOG PARSER GENERATOR

AECID-PG implements a density-based parser generator
approach, which uses token frequencies instead of a distance
metric to determine whether patterns should be static or
variable and if a branch element is required. However, the
main difference to existing approaches is that this computation
is carried out locally in every node of the generated parser tree,
rather than for all log lines.

In the remaining section, we will use Fig. 2 to explain our
analytical model to generate log parsers. For convenience, the
tree represents synthetic log data that includes log lines such
as T D X I Z, where T represents the time stamp of the
line. Each line is split into tokens separated by white spaces.
The example line would be split into the tokens T, D, X, I, Z.
Assuming that the tokens X and Z represent variable parts of
the log line, the related path of the parser tree includes also
variable nodes. Hence, in Fig. 2, letters represent tokens with
static and stars tokens with variable patterns.

A. Problem Statement

The simplest method to automatically build a tree-like parser
for log data is to use a set of training log lines that represents
the normal system behavior and define a tree, where all parts
of the log lines are considered static. Therefore, all nodes
represent static patterns, and the tree includes all possible
unique paths occurring in the log data. Thus, the parser
generator creates branches when it registers a sequence of
tokens, which is not yet present in the parser tree. For example,
in Fig. 2 in column Y3, the parser generator creates a branch at
the top node that represents token E. When the parser generator
recognized the log line T A E H J for the first time, this
path represented only log lines with the token sequence T A
E G. Building a parser tree like that results in a parser, which
would perfectly parse the training log data, but if one applies
it to other log data, even if it origins from the same system,
many log lines would be unparsed, i.e. not reflected accurately
by this parser tree. Reasons for this are that (i) unique log line
parts, such as IDs and time stamps, and (ii) highly variable
parts, such as sensor values, are considered static. Thus, the
resulting parser would over-fit the trainings data and could
not be practically applied due to its complexity. To avoid an
over-fitting parser, AECID-PG applies a set of rules to decide
whether it should create a node that represents static text, a
node that allows variable text, or a branch into more than
one node that represents static text. Also paths that occur too
rarely, such as between E and G in the top of column Y3 and
Y4 are omitted by the parser generator due to the fact they
are outliers and therefore are not part of the normal system
behavior.



“ntpd[“ PID 
[INT]

“]: “

“Listening on routing 
socket on fd # “

“Listen normally on “

“proto: precision = “

FD 
[INT]

FD 
[INT]

PREC 
[DDM]

“ for interface updates“

“ “

“ usec“

INTERFA
CE [IF]

ADDRESS 
[IPv4]

“ “
“ UDP 123“

“:123“

static

variable

branch

Figure 1. The tree visualizes a part of the parser tree for ntpd (Network Time Protocol) service logs.

A

B

C

D

E

E

F

H

I

J

K
0.24

0.24

0.24

0.24

0.04

1
0.04

0.96 1

1 1 0.83

1 1

1 1

1 1 1

T

I

G

L M N O

*

* 1 *

Y1 Y2 Y3 Y4 Y5

Figure 2. A synthetic parser tree. The square node represents the preamble
including the time stamp T, orange circles static nodes, blue pentagons
variable nodes, red triangles nodes that occur too rarely to be part of the
parser, and green hexagons optional nodes.

B. AECID-PG Concept

Figure 3 visualizes the concept of the AECID-PG approach.
In the following, we assume that the parser generator processes
the log lines in one batch. The approach basically splits into
four steps: (i) Log data is collected. In this paper, we consider
textual log data which one or more computer systems or
network components produce sequentially in form of log lines.
(ii) Each log line is tokenized, i.e. split into meaningful strings.
Therefore, a predefined list of delimiters is used that can
include symbols such as white spaces, colons, equal signs,
brackets, etc. The tokens form the basis to build the parser
tree, because they define the nodes of the tree. (iii) The data
is transformed into a table, where column Yi stores a list of
the i-th token of the log lines. AECID-PG processes the data
column-wise instead of line by line, to improve the runtime
of the parser generator. This is faster, because the algorithm
applies hash-tables for this purpose and the maximum number
of tokens per log line is usually significantly lower than the
number of lines the trainings data set consists of. (iv) The
algorithm builds the parser tree. Therefore, nodes of tree-depth
i correspond to tokens in column Yi, as also shown in Fig. 2.
An edge between two consecutive nodes can only exist, if the
corresponding tokens at least once occur consecutively in the

same log line. The next section describes how the algorithms
decides, which kind of node, i.e., static, branch, variable, etc.,
it generates.

C. AECID-PG Rules

AECID-PG applies four rules to build a parser tree and to
determine the properties of a node. To describe these rules, we
define the path-frequency PF kij , which describes the frequency
by which node nki from column Yk reaches node nk+1

j in
column Yk+1 (cf. Eq. (1)), where |nki | defines the number of
lines of the trainings set that reached node nki , k = 0, . . . ,m
stands for the column number, i.e. tree depth, and i = 0, . . . , p
corresponds with the index of the nodes in column Yk and
j = 0, . . . , q with the index of the nodes in column Yk+1.
We assume that the path-frequency is only calculated between
consecutive nodes that are linked with an edge ekij , i.e. path.

PF kij =
|nk+1
j |
|nki |

(1)

In the following, we assume the algorithm builds the parser
tree for one column after another, starting with Y1. All of the
following steps are applied to all nki ∈ Yk, with i = 0, . . . , p.
This means also that the following steps are carried out
for each node, i.e. the algorithm has only to consider the
remaining log lines described by the path of the current node.
First, the algorithm applies the previously described simplest
approach for the current column Yk. This means, it keeps
all unique tokens as nodes with static patterns. After the
initialization of Yk+1, it applies the following rules to refine
the tree in the current column. Hence, the algorithm decides
whether nodes with static or variable patterns are required, and
whether the parser tree needs a branch or not.

Rule 1. When starting from node nki , if there is no node
nk+1
j , with existing ekij and PF kij greater than or equal to θ1,

with θ1 ∈ [0, 1], the algorithm creates a node with a variable
pattern, i.e., the parser allows any input (cf. Eq. (2), where
V AR stands for a node with a variable pattern).

{nk+1
j : ∃ekij ∧ PF kij ≥ θ1} = ∅ ⇒ V AR (2)

Rule 1 ensures that the algorithm avoids generating nodes
with static patterns for tokens that occur rarely in the log data
and therefore would lead to an over-fitting parser. In Fig. 2,



Tokenize DataCollect Data Consider Column-wise Build Parser Tree

Figure 3. AECID-PG process flow.

this is represented by the blue pentagonal nodes with a star
inside.

Rule 2. The second rule is evaluated if there exists exactly
one of the generated nodes nk+1

j , with existing ekij and PF kij
greater than or equal to θ1, i.e. |{nk+1

j : ∃ekij∧PF kij ≥ θ1}| =
1. Rule 2 distinguishes the following two cases:

a. If nk+1
j ∈ {nk+1

j : ∃ekij ∧PF kij ≥ θ1} additionally satisfies
Eq. (3), the algorithm generates a single successive node
nk+1
j of nki , with a static pattern, that only allows the text

of the corresponding token.

PF kij ≥ θ2,with θ2 ∈ [0, 1] (3)

b. If nk+1
j ∈ {nk+1

j : ∃ekij ∧ PF kij ≥ θ1} does not satisfy
Eq. (3), the algorithm creates a node with variable pattern
V AR, i.e. the parser allows any input.

Rule 2 ensures that the algorithm does not build a parser
model that rejects too many log lines, if the path-frequency to
only one node exceeds θ1, because, for example, if θ1 = 0.1,
the algorithm could reject up to 90% of the log lines that
reached the preceding node. Therefore, the path-frequency to
this node has to exceed a second higher threshold θ2. Figure 2
provides an example for Rule 2 in line one between column Y3

and Y4. Assuming θ1 = 0.1 and θ2 = 0.9, the path-frequency
to the upper node G does not exceed θ1 and therefore the node
is marked with a red triangle and omitted in the final parser
tree. On the other hand, the path-frequency to the lower node
H exceeds θ1 and θ2 and therefore the node is marked with
an orange circle and is part of the final parser tree as node
representing a static text pattern.

Rule 3. The third rule is evaluated if there exist more than
one of the generated nodes nk+1

j , with existing ekij and PF kij
greater than or equal to θ1, i.e. |{nk+1

j : ∃ekij∧PF kij ≥ θ1}| >
1.

Rule 3 distinguishes the following two cases:

a. If nk+1
j ∈ {nk+1

j : ∃ekij ∧PF kij ≥ θ1} additionally satisfies
Eq. (4), where J = {j = 0, . . . , q : nk+1

j ∈ {nk+1
j : ∃ekij ∧

PF kij ≥ θ1}} is the set of the indexes of the nodes that
satisfy Rule 1, the algorithm generates successive nodes
nk+1
j of nki for all nk+1

j ∈ {nk+1
j : ∃ekij ∧ PF kij ≥ θ1},

with a static pattern, that only allows the text of the
corresponding token.∑

j∈J
PF kij ≥ θ3,with θ3 ∈ [0, 1] (4)

b. If nk+1
j ∈ {nk+1

j : ∃ekij ∧ PF kij ≥ θ1} does not satisfy
Eq. (4), the algorithm creates a node with variable pattern
V AR, i.e., the parser allows any input.

Similarly to Rule 2, Rule 3 ensures that the algorithm does
not build a parser tree that rejects too many log lines. For
example, if θ1 = 0.1, the algorithm could reject up to 80% of
the log lines that reached the preceding node, if only 2 nodes
have higher path-frequencies than θ1. Thus, additionally the
sum of the path-frequencies to the nodes, which exceed θ1, has
to exceed also a higher threshold θ3. In Fig. 2, the transition
between Y1 and Y2 provides an example for Rule 3. Assuming
θ1 = 0.1 and θ3 = 0.95, the sum of the path-frequencies to
the orange circled nodes, representing nodes corresponding to
static text patterns, which each exceeds θ1, exceeds θ3. If that
would not be the case a pentagonal blue node, representing
a node corresponding to a variable pattern, would have been
generated.

Since, some log lines might end before the path ends, rule
4 is required.

Rule 4. The fourth rule is evaluated, if some log lines end in
a node, i.e. before the path ends, and all others succeed. Rule
4 evaluates the following two cases:

a. If the ratio of lines that end in nki is higher than θ4 ∈ [0, 1],
the algorithm generates all succeeding nodes as optional
nodes, i.e. lines can either end before, or reach all succee-
ding nodes. Otherwise, all lines have to succeed or are
considered unparsed.

b. If the ratio of lines that do not end in nki is lower than
θ5 ∈ [0, 1], the path ends in node nkj and there are no
succeeding nodes. Otherwise, either rule 4a is true or all
lines have to succeed.

Note that θ4 always has to be greater than or equal to θ5.
In Figure 2, in column Y4 the top third green octagonal node
provides an example for Rule 4. Assuming θ4 = 0.1 and θ5 =
0.8, it is possible that optionally some lines end in this node
and some exceed it till the end of the path.

D. Features

The remaining section summarizes AECID-PG’s most im-
portant features. First of all, while most log parser generators
only use white-spaces to tokenize the log data, AECID-PG
provides the option to freely choose a delimiter and even to
define a list of delimiters. Hence, AECID-PG adapts better
to log data with different properties and therefore is broadly
applicable.



Furthermore, AECID-PG considers path-frequencies locally
in each node. Thus, two paths in the parser tree that represent
two independent log line classes do not influence each other.
Furthermore, it is easier for the parser generator to create
branches the farther away the nodes are from the root node.
This suits the fact, that log lines are more similar in the
beginning than in the end. For example, a syslog line usually
starts with time stamp, host name, and in most times service
name, before the structure and the content become looser [3].

However, to ensure that the thresholds θ1 − θ5 are globally
correct and with increasing tree depth IDs do not become
nodes with static patterns, which would make the parser
inapplicable, for log data that differs from the training data,
AECID-PG includes an optional damping mechanism. The
damping mechanism is a function that increases the thresholds
θi in relation to the current tree depth k, and applies the
damping constant ∆ (see. Eq (5), where |nki | is the number
of lines that reached node nki ).

θik+1
= θik(1 + ∆), ∆ = 1− |n

k+1
j |
|nk

i |
(5)

Moreover, AECID-PG is able to detect predefined patterns,
that correspond to the ones the AMiner [2], a log sensor for
anomaly detection that leverages a tree-based parser, applies,
such as IP addresses, date times, integers, or specified alp-
habets. These nodes are similar to nodes that allow variable
patterns. However, they demand for certain properties of the
parsed log line parts.

IV. EVALUATION

The following section discusses the evaluation of AECID-
PG. The section describes the real world data we used for
the calculation of the F -Score1 and its results, the approaches
we compared with AECID-PG and an application scenario.
We do not evaluate the performance of AECID-PG, because
generating a parser is not a time critical task. Furthermore,
the parser approache reduces the complexity of parsing from
O(n) to O(log(n)) by definition.

A. Experimental data

For the evaluation of AECID-PG, we used five real-world
data sets: (i) logs from the supercomputer system BlueGene/L
(BGL) [4], (ii) HPC logs from a high performance cluster,
which has 49 nodes with 6,152 cores and 128GB memory per
node [5], (iii) logs from a 203-node cluster on Amazon EC2
platform (HDFS) [6], (iv) logs from Zookeeper installed on
a cluster with 32-nodes [7], and (v) logs form the standalone
software Proxifier [7]. Table I describes important properties
of the data and demonstrates the complexity of the data
sets. The table shows that the data sets are significantly
different regarding length of log lines with respect to white-
space separated words (excluding time stamps), and number
of templates in the ground-truth, which relates to the number
of different events logged in the log files (cf. Tab. I).

1F1 = 2·Precision·Recall
Precision+Recall

, P rec. = TP
TP+FP

, Rec. = TP
TP+FN

Table I
EXPERIMENTAL DATA: NUMBER OF WORDS PER LOG LINE, NUMBER OF

TEMPLATES IN THE GROUND-TRUTH, NUMBER OF TEMPLATES
GENERATED WITH AECID-PG, AECID-PG INPUT PARAMETERS.

BGL HPC HDFS Zookeeper Proxifier
Line Length 10-102 6-104 8-29 8-27 10-27
#Templates GT 112 44 14 46 7
#Templ. AECID-PG 120 17 10 17 9
θ1 0.05 0.05 0.02 0.2 0.05
θ2 = θ3 0.6 0.9 0.9 0.9 0.95
θ4 = θ5 0.01 0.01 0.01 0.01 0.01
∆ 0.1 0.1 0.1 0.01 0.01
Delimiters ‘ ’ ‘ ’, =, (, ) ‘ ’ ‘ ’, @ ‘ ’, (, )

B. F -Score Evaluation and comparison with other approaches

For the evaluation of the accuracy of AECID-PG, we
calculated the F -Score as shown in [8] and compared AECID-
PG to five other parser generator approaches: (i) SLCT (Simple
Logfile Clustering Tool), a density-based clustering approach
that generates log patterns, (ii) IPLoM (Iterative Partitioning
Log Mining) applies a heuristic three-step hierarchical parti-
tioning approach to generate templates, (iii) LKE (Log Key
Extraction) that applies clustering and heuristics, (iv) LogSig
uses word pair generation and clustering before it generates log
templates and (v) Drain, a log parser generator using a fixed
depth tree approach [9]. For the choice of input parameters, we
oriented us on [9] and [7]. The input parameters of AECID-
PG (see Tab. I) depend on the complexity of the input data.
For example, a more complex data set requires a smaller θ1,
which makes it easier to generate branches.

For the F -Score evaluation, we randomly chose 2000 lines
from each of the log log files described in the previous section.
The data, as well as implementations of the aforementioned
log parser generator algorithms and their configurations are
provided by [7], who also provide a ground-truth for each
log file that we leveraged to calculate the F -Score. For
the calculation of the F -Score, first, all log lines of the
experimental data have been assigned to the correct template
of the ground-truth. Then, the parser generators have been
applied to the data. Once the parser has been generated, for
example in case of AECID-PG, we created a template for each
path in the parser-tree, i.e., the path between root node and
each leaf node, including optional nodes. Next, we assigned
the log lines of the experimental data to the corresponding
templates. Finally, we calculated the true positives (TP), true
negatives (TN), false positives (FP) and false negatives (FN),
as [8] describes: A TP decision assigns two lines which are
assigned to the same template of the ground-truth also to the
same template when considering the templates of the parser
generator, a TN decision assigns two lines which are assigned
to different templates of the ground-truth also to different
templates of the parser generator, a FP decision assigns two
lines which are assigned to different templates of the ground-
truth to the same template of the parser generator, and a FN
decision assigns two lines which are assigned to the same
template of the ground-truth to different templates of the parser
generator.



Table II summarizes the results of the F -Score evaluation.
The input parameters we used for AECID-PG are given in Tab.
I. The F -Sore values demonstrate that parsers generated with
AECID-PG are either more accurate than the parsers of the
compared parser generators or at least comparably accurate.
Furthermore, we calculated the average F -Score, which is
stored in the last column in Tab. II. AECID-PG achieves the
highest average F -Score, which proves its broad applicability.

Table II
COMPARISON OF F -SCORE RESULTS FOR DIFFERENT PARSER

GENERATORS AND LOG FILES

BGL HPC HDFS Zookeeper Proxifier Avg
AECID-PG 0.9556 0.9626 0.9996 0.9487 0.8496 0.94322
SLCT 0.6355 0.8109 0.4143 0.8218 0.8707 0.71064
IPLoM 0.9999 0.6485 0.869 0.9995 0.8609 0.87556
LKE 0.4765 0.1793 0.9637 0.8224 0.8684 0.66206
LogSig 0.2653 0.8662 0.9493 0.9906 0.8467 0.783618
Drain 0.9896 0.8576 1 0.9995 0.8609 0.94152

C. Application Scenario

The remaining section describes an application scenario
for AECID-PG. Specifically, we took an HDFS log file [6]
of around 2 days, consisting of more than 11 million lines.
We randomly chose 1% of the lines as training data and
used AECID-PG to create a parser tree for HDFS logs. The
input parameters we used are: θ1 = 0.005, θ2 = θ3 =
0.95, θ4 = θ5 = 0.001,∆ = 0.01, and delimiters white-space
and underscore. During the training, 0.17% of the training
data have not been represented by the resulting parser-tree,
because these lines occurred too rarely and therefore have been
considered as outliers. We then transformed the parser-tree into
a parser for the AMiner2 and applied it to the whole data set,
which only consists of log lines representing normal system
behavior. The result was that only 0.23% of the lines were
unparsed. Furthermore, the parser processed 84.800 lines per
second and it took 132 seconds to process the whole file on
a common desktop machine.

V. RELATED WORK

Dealing with massive amounts of log messages is a common
problem in log data analysis and requires automatized methods
for classifying and parsing log data. A first approach for log
clustering using templates was SLCT [1]. The algorithm the-
reby pursues a density-based, clustering, i.e., frequent words
on certain positions in the log lines are considered as fixed,
while infrequent words are considered as variables. Distance-
based approaches group similar log lines and extract signatures
from the resulting clusters. Signatures may then be generated
by different approaches, e.g., merging the log messages using
string alignments [10], building parse trees based on the
number of tokens in the log lines [9], and replacing words
that diverge in the grouped sets of log lines with wildcards that
represent variable nodes [11]. Another method for generating

2https://launchpad.net/logdata-anomaly-miner

log signatures is partitioning. Thereby, the groups of log
lines are iteratively divided into subgroups by splitting at
appropriate token positions, e.g., IPLoM [12]. Finally, recent
approaches use neural networks for signature extraction [13].

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented AECID-PG, a novel density-
based approach for a parser tree generator for textual compu-
ter log data. AECID-PG automatically generates log parsers
and therefore reduces time for maintenance of log parsers
tremendously. The tree structure of the parser, reduces the
computational complexity for log line parsing enormously, in
opposite to applying long lists of regular expressions. The
so increased performance of log parsing enables online log
analysis. The evaluation showed the broad applicability of the
AECID-PG approach and demonstrated its functionalities in a
real world scenario.

Currently, the parser generator processes the training data
as batch, i.e. all log lines at once, and finally provides the tree-
like parser. The parser can be applied, for example, with the
AMiner a sensor for online anomaly detection [2]. We plan
to further develop AECID-PG so that it can also sequentially
build the parser tree and adapt the parser according to changes
in the system behavior.

ACKNOWLEDGMENT

This work was partly funded by the FFG projects BAESE
(852301), synERGY (855457) and INDICAETING (868306).

REFERENCES

[1] R. Vaarandi, “A data clustering algorithm for mining patterns from event
logs,” in IPOM 2003. IEEE, 2003, pp. 119–126.

[2] M. Wurzenberger, F. Skopik, G. Settanni, and R. Fiedler, “AECID:
A self-learning anomaly detection approach based on light-weight log
parser models,” in Proceedings of the 4th International Conference
on Information Systems Security and Privacy, ICISSP 2018, Funchal,
Madeira - Portugal, January 22-24, 2018., 2018, pp. 386–397.

[3] R. Gerhards, “The syslog protocol,” Tech. Rep., 2009.
[4] A. Oliner and J. Stearley, “What supercomputers say: A study of five

system logs,” in Dependable Systems and Networks, 2007. DSN’07.
IEEE, 2007, pp. 575–584.

[5] L. LLC., “Operational data to support and enable computer science
research.” [Online]. Available: http://institutes.lanl.gov/data/fdata

[6] W. e. a. Xu, “Detecting large-scale system problems by mining con-
sole logs,” in Proceedings of the ACM SIGOPS 22nd symposium on
Operating systems principles. ACM, 2009, pp. 117–132.

[7] L. Team, “Logpai.” [Online]. Available: https://github.com/logpai/
[8] C. Manning, P. Raghavan, H. Schütze, and C. U. Press, Introduction

to Information Retrieval. Cambridge University Press, 2017. [Online].
Available: https://books.google.at/books?id=Sq66tQEACAAJ

[9] P. He, J. Zhu, Z. Zheng, and M. R. Lyu, “Drain: An online log parsing
approach with fixed depth tree,” in Web Services (ICWS), 2017 IEEE
International Conference on. IEEE, 2017, pp. 33–40.

[10] H. e. a. Hamooni, “Logmine: Fast pattern recognition for log analytics,”
in Proceedings of the 25th ACM International on Conference on
Information and Knowledge Management. ACM, 2016, pp. 1573–1582.

[11] K. Shima, “Length matters: Clustering system log messages using length
of words,” arXiv preprint arXiv:1611.03213, 2016.

[12] A. A. Makanju, A. N. Zincir-Heywood, and E. E. Milios, “Clustering
event logs using iterative partitioning,” in Proceedings of the 15th ACM
SIGKDD international conference on Knowledge discovery and data
mining. ACM, 2009, pp. 1255–1264.

[13] V. Menkovski and M. Petkovic, “Towards unsupervised signature ex-
traction of forensic logs,” in Benelearn 2017: Proceedings of the Twenty-
Sixth Benelux Conference on Machine Learning, Technische Universiteit
Eindhoven, 9-10 June 2017, 2017, p. 154.


